1
|
Bucelli M, Zingaro A, Africa PC, Fumagalli I, Dede' L, Quarteroni A. A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to the human left heart. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3678. [PMID: 36579792 DOI: 10.1002/cnm.3678] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
We propose a mathematical and numerical model for the simulation of the heart function that couples cardiac electrophysiology, active and passive mechanics and hemodynamics, and includes reduced models for cardiac valves and the circulatory system. Our model accounts for the major feedback effects among the different processes that characterize the heart function, including electro-mechanical and mechano-electrical feedback as well as force-strain and force-velocity relationships. Moreover, it provides a three-dimensional representation of both the cardiac muscle and the hemodynamics, coupled in a fluid-structure interaction (FSI) model. By leveraging the multiphysics nature of the problem, we discretize it in time with a segregated electrophysiology-force generation-FSI approach, allowing for efficiency and flexibility in the numerical solution. We employ a monolithic approach for the numerical discretization of the FSI problem. We use finite elements for the spatial discretization of partial differential equations. We carry out a numerical simulation on a realistic human left heart model, obtaining results that are qualitatively and quantitatively in agreement with physiological ranges and medical images.
Collapse
Affiliation(s)
- Michele Bucelli
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | - Alberto Zingaro
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | | | - Ivan Fumagalli
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | - Luca Dede'
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
| | - Alfio Quarteroni
- MOX, Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
- Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Ibrahim ESH, Dennison J, Frank L, Stojanovska J. Diastolic Cardiac Function by MRI-Imaging Capabilities and Clinical Applications. Tomography 2021; 7:893-914. [PMID: 34941647 PMCID: PMC8706325 DOI: 10.3390/tomography7040075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 02/05/2023] Open
Abstract
Most cardiac studies focus on evaluating left ventricular (LV) systolic function. However, the assessment of diastolic cardiac function is becoming more appreciated, especially with the increasing prevalence of pathologies associated with diastolic dysfunction like heart failure with preserved ejection fraction (HFpEF). Diastolic dysfunction is an indication of abnormal mechanical properties of the myocardium, characterized by slow or delayed myocardial relaxation, abnormal LV distensibility, and/or impaired LV filling. Diastolic dysfunction has been shown to be associated with age and other cardiovascular risk factors such as hypertension and diabetes mellitus. In this context, cardiac magnetic resonance imaging (MRI) has the capability for differentiating between normal and abnormal myocardial relaxation patterns, and therefore offers the prospect of early detection of diastolic dysfunction. Although diastolic cardiac function can be assessed from the ratio between early and atrial filling peaks (E/A ratio), measuring different parameters of heart contractility during diastole allows for evaluating spatial and temporal patterns of cardiac function with the potential for illustrating subtle changes related to age, gender, or other differences among different patient populations. In this article, we review different MRI techniques for evaluating diastolic function along with clinical applications and findings in different heart diseases.
Collapse
Affiliation(s)
- El-Sayed H. Ibrahim
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Correspondence:
| | - Jennifer Dennison
- Department of Medicine, Medical College of Wisconsin, Wausau, WI 54401, USA;
| | - Luba Frank
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | | |
Collapse
|
3
|
Bojer AS, Soerensen MH, Gaede P, Myerson S, Madsen PL. Left Ventricular Diastolic Function Studied with Magnetic Resonance Imaging: A Systematic Review of Techniques and Relation to Established Measures of Diastolic Function. Diagnostics (Basel) 2021; 11:diagnostics11071282. [PMID: 34359363 PMCID: PMC8305340 DOI: 10.3390/diagnostics11071282] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: In recent years, cardiac magnetic resonance (CMR) has been used to assess LV diastolic function. In this systematic review, studies were identified where CMR parameters had been evaluated in healthy and/or patient groups with proven diastolic dysfunction or known to develop heart failure with preserved ejection fraction. We aimed at describing the parameters most often used, thresholds where possible, and correlation to echocardiographic and invasive measurements. Methods and results: A systematic literature review was performed using the databases of PubMed, Embase, and Cochrane. In total, 3808 articles were screened, and 102 studies were included. Four main CMR techniques were identified: tagging; time/volume curves; mitral inflow quantification with velocity-encoded phase-contrast sequences; and feature tracking. Techniques were described and estimates were presented in tables. From published studies, peak change of torsion shear angle versus volume changes in early diastole (−dφ′/dV′) (from tagging analysis), early peak filling rate indexed to LV end-diastolic volume <2.1 s−1 (from LV time-volume curve analysis), enlarged LA maximal volume >52 mL/m2, lowered LA total (<40%), and lowered LA passive emptying fractions (<16%) seem to be reliable measures of LV diastolic dysfunction. Feature tracking, especially of the atrium, shows promise but is still a novel technique. Conclusion: CMR techniques of LV untwisting and early filling and LA measures of poor emptying are promising for the diagnosis of LV filling impairment, but further research in long-term follow-up studies is needed to assess the ability for the parameters to predict patient related outcomes.
Collapse
Affiliation(s)
- Annemie Stege Bojer
- Department of Cardiology and Endocrinology, Slagelse Hospital, 4200 Slagelse, Denmark; (M.H.S.); (P.G.)
- Institute of Regional Health Research, University of Sothern Denmark, 5230 Odense, Denmark
- Correspondence:
| | - Martin Heyn Soerensen
- Department of Cardiology and Endocrinology, Slagelse Hospital, 4200 Slagelse, Denmark; (M.H.S.); (P.G.)
| | - Peter Gaede
- Department of Cardiology and Endocrinology, Slagelse Hospital, 4200 Slagelse, Denmark; (M.H.S.); (P.G.)
- Institute of Regional Health Research, University of Sothern Denmark, 5230 Odense, Denmark
| | - Saul Myerson
- Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford OX1 2JD, UK;
| | - Per Lav Madsen
- Department of Cardiology, Copenhagen University Hospital, 2730 Herlev, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Levrero-Florencio F, Margara F, Zacur E, Bueno-Orovio A, Wang Z, Santiago A, Aguado-Sierra J, Houzeaux G, Grau V, Kay D, Vázquez M, Ruiz-Baier R, Rodriguez B. Sensitivity analysis of a strongly-coupled human-based electromechanical cardiac model: Effect of mechanical parameters on physiologically relevant biomarkers. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2020; 361:112762. [PMID: 32565583 PMCID: PMC7299076 DOI: 10.1016/j.cma.2019.112762] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The human heart beats as a result of multiscale nonlinear dynamics coupling subcellular to whole organ processes, achieving electrophysiologically-driven mechanical contraction. Computational cardiac modelling and simulation have achieved a great degree of maturity, both in terms of mathematical models of underlying biophysical processes and the development of simulation software. In this study, we present the detailed description of a human-based physiologically-based, and fully-coupled ventricular electromechanical modelling and simulation framework, and a sensitivity analysis focused on its mechanical properties. The biophysical detail of the model, from ionic to whole-organ, is crucial to enable future simulations of disease and drug action. Key novelties include the coupling of state-of-the-art human-based electrophysiology membrane kinetics, excitation-contraction and active contraction models, and the incorporation of a pre-stress model to allow for pre-stressing and pre-loading the ventricles in a dynamical regime. Through high performance computing simulations, we demonstrate that 50% to 200% - 1000% variations in key parameters result in changes in clinically-relevant mechanical biomarkers ranging from diseased to healthy values in clinical studies. Furthermore mechanical biomarkers are primarily affected by only one or two parameters. Specifically, ejection fraction is dominated by the scaling parameter of the active tension model and its scaling parameter in the normal direction ( k ort 2 ); the end systolic pressure is dominated by the pressure at which the ejection phase is triggered ( P ej ) and the compliance of the Windkessel fluid model ( C ); and the longitudinal fractional shortening is dominated by the fibre angle ( ϕ ) and k ort 2 . The wall thickening does not seem to be clearly dominated by any of the considered input parameters. In summary, this study presents in detail the description and implementation of a human-based coupled electromechanical modelling and simulation framework, and a high performance computing study on the sensitivity of mechanical biomarkers to key model parameters. The tools and knowledge generated enable future investigations into disease and drug action on human ventricles.
Collapse
Affiliation(s)
- F. Levrero-Florencio
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
- Corresponding authors.
| | - F. Margara
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - E. Zacur
- Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - A. Bueno-Orovio
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - Z.J. Wang
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - A. Santiago
- Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona 08034, Spain
| | - J. Aguado-Sierra
- Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona 08034, Spain
| | - G. Houzeaux
- Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona 08034, Spain
| | - V. Grau
- Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - D. Kay
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - M. Vázquez
- Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona 08034, Spain
- ELEM Biotech, Spain
| | - R. Ruiz-Baier
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
- Universidad Adventista de Chile, Casilla 7-D, Chillan, Chile
| | - B. Rodriguez
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
- Corresponding authors.
| |
Collapse
|
5
|
Benschop L, Schalekamp-Timmermans S, Broere-Brown ZA, Roeters van Lennep JE, Jaddoe VWV, Roos-Hesselink JW, Ikram MK, Steegers EAP, Roberts JM, Gandley RE. Placental Growth Factor as an Indicator of Maternal Cardiovascular Risk After Pregnancy. Circulation 2020; 139:1698-1709. [PMID: 30760000 DOI: 10.1161/circulationaha.118.036632] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Angiogenic placental growth factor (PlGF) concentrations rise during pregnancy, peaking at the end of midpregnancy. Low PlGF concentrations during pregnancy are associated with pregnancy complications with recognized later-life cardiovascular risk. We hypothesized that low PlGF concentrations, especially in midpregnancy, identify not only a subset of women at risk for pregnancy complications but also women with greater cardiovascular risk factor burden after pregnancy regardless of pregnancy outcome. METHODS In a population-based prospective cohort study of 5475 women, we computed gestational age-adjusted multiples of the medians of early pregnancy and midpregnancy PlGF concentrations. Information on pregnancy complications (preeclampsia, small for gestational age, and spontaneous preterm birth) was obtained from hospital registries. Six years after pregnancy, we measured maternal systolic and diastolic blood pressures, cardiac structure (aortic root diameter, left atrial diameter, left ventricular mass, and fractional shortening), carotid-femoral pulse wave velocity, and central retinal arteriolar and venular calibers. Blood pressure was also measured 9 years after pregnancy. RESULTS Women were on average 29.8 (SD, 5.2) years of age in pregnancy, were mostly European (55.2%), and 14.8% developed a pregnancy complication. Quartile analysis showed that especially women with midpregnancy PlGF in the lowest quartile (the low-PlGF subset) had a larger aortic root diameter (0.40 mm [95% CI, 0.08-0.73]), left atrial diameter (0.34 mm [95% CI, -0.09 to 0.78]), left ventricular mass (4.6 g [95% CI, 1.1-8.1]), and systolic blood pressure (2.3 mm Hg [95% CI, 0.93-3.6]) 6 years after pregnancy than women with the highest PlGF. Linear regression analysis showed that higher midpregnancy PlGF concentrations were associated with a smaller aortic root diameter (-0.24 mm [95% CI, -0.39 to -0.10]), smaller left atrial diameter (-0.75 mm [95% CI, -0.95 to -0.56]), lower left ventricular mass (-3.9 g [95% CI, -5.5 to -2.3]), and lower systolic blood pressure (-1.1 mm Hg [95% CI, -1.7 to -0.46]). These differences persisted after the exclusion of women with complicated pregnancies. CONCLUSIONS Women with low PlGF in midpregnancy have a greater aortic root diameter, left atrial diameter, and left ventricular mass and higher systolic blood pressure 6 and 9 years after pregnancy compared to women with higher PlGF, including women with uncomplicated pregnancies. The pathophysiological implications of lower PlGF concentrations in midpregnancy might provide insight into the identification of pathways contributing to greater cardiovascular risk factor burden.
Collapse
Affiliation(s)
- Laura Benschop
- Departments of Obstetrics and Gynecology (L.B., S.S.-T., Z.A.B.-B., E.A.P.S.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sarah Schalekamp-Timmermans
- Departments of Obstetrics and Gynecology (L.B., S.S.-T., Z.A.B.-B., E.A.P.S.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Zoe A Broere-Brown
- Departments of Obstetrics and Gynecology (L.B., S.S.-T., Z.A.B.-B., E.A.P.S.), Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Vincent W V Jaddoe
- Epidemiology (V.W.V.J.), Erasmus Medical Center, Rotterdam, the Netherlands.,Pediatrics (V.W.V.J.), Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - M Kamran Ikram
- Epidemiology and Neurology (M.K.I.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eric A P Steegers
- Departments of Obstetrics and Gynecology (L.B., S.S.-T., Z.A.B.-B., E.A.P.S.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - James M Roberts
- Magee-Womens Research Institute, Department of Obstetrics and Gynecology and Reproductive Sciences (J.M.R., R.E.G.), University of Pittsburgh, PA.,Department of Epidemiology and Clinical and Translational Research (J.M.R.), University of Pittsburgh, PA
| | - Robin E Gandley
- Magee-Womens Research Institute, Department of Obstetrics and Gynecology and Reproductive Sciences (J.M.R., R.E.G.), University of Pittsburgh, PA
| |
Collapse
|
6
|
Ribeiro SM, Azevedo Filho CFD, Sampaio R, Tarasoutchi F, Grinberg M, Kalil-Filho R, Rochitte CE. Longitudinal Shortening of the Left Ventricle by Cine-CMR for Assessment of Diastolic Function in Patients with Aortic Valve Disease. Arq Bras Cardiol 2019; 114:284-292. [PMID: 31553387 PMCID: PMC7077567 DOI: 10.5935/abc.20190193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/15/2019] [Indexed: 01/19/2023] Open
Abstract
Background Diastolic dysfunction, commonly evaluated by echocardiography, is an important early finding in many cardiomyopathies. Cardiac magnetic resonance (CMR) often requires specialized sequences that extends the test time. Recently, feature-tracking imaging has been made available, but still requires expensive software and lacks clinical validation. Objective To assess diastolic function in patients with aortic valve disease (AVD) and compare it with normal controls by evaluating left ventricular (LV) longitudinal displacement by CMR. Methods We compared 26 AVD patients with 19 normal controls. Diastolic function was evaluated as LV longitudinal displacement in 4-chamber view cine-CMR images using steady state free precession (SSFP) sequence during the entire cardiac cycle with temporal resolution < 50 ms. The resulting plot of atrioventricular junction (AVJ) position versus time generated variables of AVJ motion. Significance level of p < 0.05 was used. Results Maximum longitudinal displacement (0.12 vs. 0.17 cm), maximum velocity during early diastole (MVED, 0.6 vs. 1.4s-1), slope of the best-fit line of displacement in diastasis (VDS, 0.22 vs. 0.03s-1), and VDS/MVED ratio (0.35 vs. 0.02) were significantly reduced in AVD patients compared with controls, respectively. Aortic regurgitation showed significantly worse longitudinal LV shortening compared with aortic stenosis. Higher LV mass indicated worse diastolic dysfunction. Conclusions A simple linear measurement detected significant differences on LV diastolic function between AVD patients and controls. LV mass was the only independent predictor of diastolic dysfunction in these patients. This method can help in the evaluation of diastolic dysfunction, improving cardiomyopathy detection by CMR, without prolonging exam time or depending on expensive software.
Collapse
Affiliation(s)
| | | | - Roney Sampaio
- Instituto do Coração (InCor) - Universidade de São Paulo (USP), São Paulo, SP - Brazil
| | - Flávio Tarasoutchi
- Instituto do Coração (InCor) - Universidade de São Paulo (USP), São Paulo, SP - Brazil
| | - Max Grinberg
- Instituto do Coração (InCor) - Universidade de São Paulo (USP), São Paulo, SP - Brazil
| | - Roberto Kalil-Filho
- Instituto do Coração (InCor) - Universidade de São Paulo (USP), São Paulo, SP - Brazil
| | | |
Collapse
|
7
|
Plitt GD, Spring JT, Moulton MJ, Agrawal DK. Mechanisms, diagnosis, and treatment of heart failure with preserved ejection fraction and diastolic dysfunction. Expert Rev Cardiovasc Ther 2018; 16:579-589. [PMID: 29976104 PMCID: PMC6287909 DOI: 10.1080/14779072.2018.1497485] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Heart failure with preserved ejection fraction (HFpEF) continues to be a major challenge for clinicians. Many crucial aspects of the syndrome remain unclear, including the exact pathophysiology, early diagnosis, and treatment. Patients with HFpEF are often asymptomatic late into the disease process, and treatment with medications commonly used in heart failure with reduced ejection fraction (HFrEF) has not been proven to be beneficial. In addition, the confusion of similar terms with HFpEF, such as diastolic heart failure, and diastolic dysfunction (DD), has led to a misunderstanding of the true scope of HFpEF. Areas covered: In this review, authors highlight the differences in terminology and critically review the current knowledge on the underlying mechanisms, diagnosis, and latest treatment strategies of HFpEF. Expert commentary: While significant advances have been made in the understanding of HFpEF, the definitive diagnosis of HFpEF continues to be difficult. The development of improved and standardized methods for detecting DD has shown promise in identifying early HFpEF. However, even with early detection, there are few treatment options shown to provide mortality benefit warranting further investigation.
Collapse
Affiliation(s)
- Gilman D. Plitt
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE
| | - Jordan T. Spring
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE
| | - Michael J. Moulton
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Devendra K. Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE
| |
Collapse
|
8
|
Vejdani-Jahromi M, Freedman J, Kim YJ, Trahey GE, Wolf PD. Assessment of Diastolic Function Using Ultrasound Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:551-561. [PMID: 29331356 PMCID: PMC5873966 DOI: 10.1016/j.ultrasmedbio.2017.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Shear wave elasticity imaging (SWEI) is a novel ultrasound elastography technique for assessing tissue stiffness. In this study, we investigate the potential of SWEI for providing diastolic functional assessment. In 11 isolated rabbit hearts, pressure-volume (PV) measurements were recorded simultaneously with SWEI recordings from the left ventricle free wall before and after induction of global ischemia. PV-based end diastolic stiffness increased by 100% after ischemia (p <0.05), and SWEI stiffness showed an increase of 103% (p <0.05). The relaxation time constant (τ) before and after ischemia derived from pressure and SWEI curves showed increases of 79% and 76%, respectively (p <0.05). A linear regression between pressure-derived and SWEI-based (τ) showed a slope of 1.164 with R2 = 0.80, indicating the near equivalence of the two assessments. SWEI can be used to derive (τ) values and myocardial end diastolic stiffness. In global conditions, these measurements are consistent with PV measurements of diastolic function.
Collapse
Affiliation(s)
| | - Jenna Freedman
- Biomedical Engineering Department, Duke University, Durham, NC, USA
| | - Young-Joong Kim
- Biomedical Engineering Department, Duke University, Durham, NC, USA
| | - Gregg E Trahey
- Biomedical Engineering Department, Duke University, Durham, NC, USA
| | - Patrick D Wolf
- Biomedical Engineering Department, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Adams L, Noutsias M, Bigalke B, Makowski MR. Magnetic resonance imaging in heart failure, including coronary imaging: numbers, facts, and challenges. ESC Heart Fail 2017; 5:3-8. [PMID: 29160621 PMCID: PMC5793958 DOI: 10.1002/ehf2.12236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) is a major risk factor for the incidence and progression of heart failure (HF). HF is characterized by a substantial morbidity and mortality and its lifetime risk is estimated at approximately 20% for men and women. As patients are in most cases identified only after developing overt clinical symptoms, detecting early stages of CAD and HF is of paramount importance. Due to its non‐invasiveness, excellent soft‐tissue contrast, high spatial resolution, and multiparametric nature, cardiovascular magnetic resonance (CMR) imaging has emerged as a promising radiation‐free technique to assess a wide range of cardiovascular diseases such as CAD or HF, enabling a comprehensive evaluation of myocardial anatomy, regional and global function, and viability with the additional benefit of in vivo tissue characterization. CMR has the potential to enhance our understanding of coronary atherosclerosis and the aetiology of HF on functional and biological levels, to identify patients at risk for CAD or HF, and to enable individualized patient management and improved outcomes. Even though larger‐scale studies on the different applications of CMR for the assessment of heart failure are scarce, recent research highlighted new possible clinical applications for CMR in the evaluation of CAD and HF.
Collapse
Affiliation(s)
- Lisa Adams
- Klinik für Radiologie, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, D -10117, Berlin, Germany
| | - Michel Noutsias
- Department of Internal Medicine I, Division of Cardiology, Pneumology, Angiology and Intensive Medical Care, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Boris Bigalke
- Klinik für Kardiologie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Marcus R Makowski
- Klinik für Radiologie, Charité - Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, D -10117, Berlin, Germany.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
10
|
Assessment of Longitudinal Shortening in Cardiomyopathies with Cardiac Magnetic Resonance. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9429-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Abstract
Despite the growing number of patients affected, the understanding of diastolic dysfunction and heart failure with preserved ejection fraction (HFpEF) is still poor. Clinical trials, largely based on successful treatments for systolic heart failure, have been disappointing, suggesting that HFpEF has a different pathology to that of systolic dysfunction. In this review, general concepts, epidemiology, diagnosis, and treatment of diastolic dysfunction are summarized, with an emphasis on new experiments suggesting that oxidative stress plays a crucial role in the pathogenesis of at least some forms of the disease. This observation has lead to potential new diagnostics and therapeutics for diastolic dysfunction and heart failure caused by diastolic dysfunction.
Collapse
Affiliation(s)
- Euy-Myoung Jeong
- Cardiovascular Research Center and Cardiovascular Institute of Lifespan, The Warren Alpert Medical School, Brown University
| | | |
Collapse
|
12
|
Horgan S, Watson C, Glezeva N, Baugh J. Murine models of diastolic dysfunction and heart failure with preserved ejection fraction. J Card Fail 2014; 20:984-95. [PMID: 25225111 DOI: 10.1016/j.cardfail.2014.09.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/12/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
Left ventricular diastolic dysfunction leads to heart failure with preserved ejection fraction, an increasingly prevalent condition largely driven by modern day lifestyle risk factors. As heart failure with preserved ejection fraction accounts for almost one-half of all patients with heart failure, appropriate nonhuman animal models are required to improve our understanding of the pathophysiology of this syndrome and to provide a platform for preclinical investigation of potential therapies. Hypertension, obesity, and diabetes are major risk factors for diastolic dysfunction and heart failure with preserved ejection fraction. This review focuses on murine models reflecting this disease continuum driven by the aforementioned common risk factors. We describe various models of diastolic dysfunction and highlight models of heart failure with preserved ejection fraction reported in the literature. Strengths and weaknesses of the different models are discussed to provide an aid to translational scientists when selecting an appropriate model. We also bring attention to the fact that heart failure with preserved ejection fraction is difficult to diagnose in animal models and that, therefore, there is a paucity of well described animal models of this increasingly important condition.
Collapse
Affiliation(s)
- S Horgan
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland; Noninvasive Cardiovascular Imaging, Brigham and Women's Hospital, Boston, Massachusetts.
| | - C Watson
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - N Glezeva
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - J Baugh
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|