1
|
Raj P, Wu L, Kim JH, Bhatt R, Glunde K, Barman I. To Acquire or Not to Acquire: Evaluating Compressive Sensing for Raman Spectroscopy in Biology. ACS Sens 2025; 10:175-184. [PMID: 39706584 PMCID: PMC11773570 DOI: 10.1021/acssensors.4c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
Raman spectroscopy has revolutionized the field of chemical biology by providing detailed chemical and compositional information with minimal sample preparation. Despite its advantages, the technique suffers from low throughput due to the weak Raman effect, necessitating long acquisition times and expensive equipment. This limitation is particularly acute in time-sensitive applications like bioprocess monitoring and dynamic studies. Compressive sensing offers a promising solution by reducing the burden on measurement hardware, lowering costs, and decreasing measurement times. It allows for the collection of sparse data, which can be computationally reconstructed later. This paper explores the practical application of compressive sensing in spontaneous Raman spectroscopy across various biological samples. We demonstrate its benefits in scenarios requiring portable hardware, rapid acquisition, and minimal storage, such as skin hydration prediction and cellular studies involving drug molecules. Our findings highlight the potential of compressive sensing to overcome traditional limitations of Raman spectroscopy, paving the way for broader adoption in biological research and clinical diagnostics.
Collapse
Affiliation(s)
- Piyush Raj
- Department
of Mechanical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
| | - Lintong Wu
- Department
of Mechanical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
| | - Jeong Hee Kim
- Department
of Mechanical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
| | - Raj Bhatt
- Hackensack
Meridian School of Medicine, Nutley, New Jersey 07110, United States
| | - Kristine Glunde
- The
Russell H. Morgan Department of Radiology and Radiological Science,The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Biological Chemistry, The Johns Hopkins
University School of Medicine, Baltimore, Maryland 21205, United States
- The
Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Ishan Barman
- Department
of Mechanical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
- The
Russell H. Morgan Department of Radiology and Radiological Science,The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, United States
- The
Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
2
|
Jha D, Blennow K, Zetterberg H, Savas JN, Hanrieder J. Spatial neurolipidomics-MALDI mass spectrometry imaging of lipids in brain pathologies. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5008. [PMID: 38445816 PMCID: PMC12013527 DOI: 10.1002/jms.5008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024]
Abstract
Given the complexity of nervous tissues, understanding neurochemical pathophysiology puts high demands on bioanalytical techniques with respect to specificity and sensitivity. Mass spectrometry imaging (MSI) has evolved to become an important, biochemical imaging technology for spatial biology in biological and translational research. The technique facilitates comprehensive, sensitive elucidation of the spatial distribution patterns of drugs, lipids, peptides, and small proteins in situ. Matrix-assisted laser desorption ionization (MALDI)-based MSI is the dominating modality due to its broad applicability and fair compromise of selectivity, sensitivity price, throughput, and ease of use. This is particularly relevant for the analysis of spatial lipid patterns, where no other comparable spatial profiling tools are available. Understanding spatial lipid biology in nervous tissue is therefore a key and emerging application area of MSI research. The aim of this review is to give a concise guide through the MSI workflow for lipid imaging in central nervous system (CNS) tissues and essential parameters to consider while developing and optimizing MSI assays. Further, this review provides a broad overview of key developments and applications of MALDI MSI-based spatial neurolipidomics to map lipid dynamics in neuronal structures, ultimately contributing to a better understanding of neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Durga Jha
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, SE-431 80 Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, SE-431 80 Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, SE-431 80 Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey N. Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, SE-431 80 Mölndal, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
3
|
Lee DK, Rubakhin SS, Sweedler JV. Chemical Decrosslinking-Based Peptide Characterization of Formaldehyde-Fixed Rat Pancreas Using Fluorescence-Guided Single-Cell Mass Spectrometry. Anal Chem 2023; 95:6732-6739. [PMID: 37040477 DOI: 10.1021/acs.analchem.3c00612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Approaches for the characterization of proteins/peptides in single cells of formaldehyde-fixed (FF) tissues via mass spectrometry (MS) are still under development. The lack of a general method for selectively eliminating formaldehyde-induced crosslinking is a major challenge. A workflow is shown for the high-throughput peptide profiling of single cells isolated from FF tissues, here the rodent pancreas, which possesses multiple peptide hormones from the islets of Langerhans. The heat treatment is enhanced by a collagen-selective multistep thermal process assisting efficient isolation of islets from the FF pancreas and, subsequently, their dissociation into single islet cells. Hydroxylamine-based chemical decrosslinking helped restore intact peptide signals from individual isolated cells. Subsequently, an acetone/glycerol-assisted cell dispersion was optimized for spatially resolved cell deposition onto glass slides, while a glycerol solution maintained the hydrated state of the cells. This sample preparation procedure allowed peptide profiling in FF single cells by fluorescence-guided matrix-assisted laser desorption ionization MS. Here, 2594 single islet cells were analyzed and 28 peptides were detected, including insulin C-peptides and glucagon. T-distributed stochastic neighbor embedding (t-SNE) data visualization demonstrated that cells cluster based on cell-specific pancreatic peptide hormones. This workflow expands the sample availability for single-cell MS characterization to a wide range of formaldehyde-treated tissue specimens stored in biobanks.
Collapse
Affiliation(s)
- Dong-Kyu Lee
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Hristova J, Svinarov D. Enhancing precision medicine through clinical mass spectrometry platform. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Julieta Hristova
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Dobrin Svinarov
- Alexander University Hospital, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
5
|
McMillen JC, Fincher JA, Klein DR, Spraggins JM, Caprioli RM. Effect of MALDI matrices on lipid analyses of biological tissues using MALDI-2 postionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4663. [PMID: 33241625 DOI: 10.26434/chemrxiv.12494705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/14/2020] [Indexed: 05/18/2023]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, untargeted detection of many hundreds of analytes from tissue. Recently, laser postionization (MALDI-2) has been developed for increased ion yield and sensitivity for lipid IMS. However, the dependence of MALDI-2 performance on the various lipid classes is largely unknown. To understand the effect of the applied matrix on MALDI-2 analysis of lipids, samples including an equimolar lipid standard mixture, various tissue homogenates, and intact rat kidney tissue sections were analyzed using the following matrices: α-cyano-4-hydroxycinnamic acid, 2',5'-dihydroxyacetophenone, 2',5'-dihydroxybenzoic acid (DHB), and norharmane (NOR). Lipid signal enhancement of protonated species using MALDI-2 technology varied based on the matrix used. Although signal improvements were observed for all matrices, the most dramatic effects using MALDI-2 were observed using NOR and DHB. For lipid standards analyzed by MALDI-2, NOR provided the broadest coverage, enabling the detection of all 13 protonated standards, including nonpolar lipids, whereas DHB gave less coverage but gave the highest signal increase for those lipids recorded. With respect to tissue homogenates and rat kidney tissue, mass spectra were compared and showed that the number and intensity of neutral lipids tentatively identified with MALDI-2 using NOR increased significantly (e.g., fivefold intensity increase for triacylglycerol). In the cases of DHB with MALDI-2, the number of protonated lipids identified from tissue homogenates doubled with 152 on average compared with 76 with MALDI alone. High spatial resolution imaging (~20 μm) of rat kidney tissue showed similar results using DHB with 125 lipids tentatively identified from MALDI-2 spectra versus just 72 using standard MALDI. From the four matrices tested, NOR provided the greatest increase in sensitivity for neutral lipids (triacylglycerol, diacylglycerol, monoacylglycerol, and cholesterol ester), and DHB provided the highest overall number of lipids detected using MALDI-2 technology.
Collapse
Affiliation(s)
- Josiah C McMillen
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, 37232, USA
| | - Jarod A Fincher
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, 37232, USA
- Departments of Biochemistry, Pharmacology and Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| | - Dustin R Klein
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, 37232, USA
- Departments of Biochemistry, Pharmacology and Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, 37232, USA
- Departments of Biochemistry, Pharmacology and Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
| | - Richard M Caprioli
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, 37232, USA
- Departments of Biochemistry, Pharmacology and Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, Tennessee, 37232, USA
- Department of Pharmacology, Vanderbilt University
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, 37232, USA
| |
Collapse
|
6
|
McMillen JC, Fincher JA, Klein DR, Spraggins JM, Caprioli RM. Effect of MALDI matrices on lipid analyses of biological tissues using MALDI-2 postionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4663. [PMID: 33241625 PMCID: PMC8099046 DOI: 10.1002/jms.4663] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/14/2020] [Indexed: 05/04/2023]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, untargeted detection of many hundreds of analytes from tissue. Recently, laser postionization (MALDI-2) has been developed for increased ion yield and sensitivity for lipid IMS. However, the dependence of MALDI-2 performance on the various lipid classes is largely unknown. To understand the effect of the applied matrix on MALDI-2 analysis of lipids, samples including an equimolar lipid standard mixture, various tissue homogenates, and intact rat kidney tissue sections were analyzed using the following matrices: α-cyano-4-hydroxycinnamic acid, 2',5'-dihydroxyacetophenone, 2',5'-dihydroxybenzoic acid (DHB), and norharmane (NOR). Lipid signal enhancement of protonated species using MALDI-2 technology varied based on the matrix used. Although signal improvements were observed for all matrices, the most dramatic effects using MALDI-2 were observed using NOR and DHB. For lipid standards analyzed by MALDI-2, NOR provided the broadest coverage, enabling the detection of all 13 protonated standards, including nonpolar lipids, whereas DHB gave less coverage but gave the highest signal increase for those lipids recorded. With respect to tissue homogenates and rat kidney tissue, mass spectra were compared and showed that the number and intensity of neutral lipids tentatively identified with MALDI-2 using NOR increased significantly (e.g., fivefold intensity increase for triacylglycerol). In the cases of DHB with MALDI-2, the number of protonated lipids identified from tissue homogenates doubled with 152 on average compared with 76 with MALDI alone. High spatial resolution imaging (~20 μm) of rat kidney tissue showed similar results using DHB with 125 lipids tentatively identified from MALDI-2 spectra versus just 72 using standard MALDI. From the four matrices tested, NOR provided the greatest increase in sensitivity for neutral lipids (triacylglycerol, diacylglycerol, monoacylglycerol, and cholesterol ester), and DHB provided the highest overall number of lipids detected using MALDI-2 technology.
Collapse
Affiliation(s)
- Josiah C. McMillen
- Department of Chemistry, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Mass Spectrometry Research Center, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jarod A. Fincher
- Department of Mass Spectrometry Research Center, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
| | - Dustin R. Klein
- Department of Mass Spectrometry Research Center, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey M. Spraggins
- Department of Mass Spectrometry Research Center, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
| | - Richard M. Caprioli
- Department of Chemistry, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Mass Spectrometry Research Center, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biochemistry, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Pharmacology, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|