1
|
Sabados A, Kim C, Rampp S, Bergherr E, Buchfelder M, Schnell O, Müller-Voggel N. Reducing Tinnitus via Inhibitory Influence of the Sensorimotor System on Auditory Cortical Activity. J Neurosci 2025; 45:e0581242025. [PMID: 39952670 PMCID: PMC12019116 DOI: 10.1523/jneurosci.0581-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/27/2024] [Accepted: 01/03/2025] [Indexed: 02/17/2025] Open
Abstract
Tinnitus is the subjective perception of a sound without corresponding external acoustic stimuli. Research highlights the influence of the sensorimotor system on tinnitus perception. Associated neuronal processes, however, are insufficiently understood, and it remains unclear how and at which hierarchical level the sensorimotor system interacts with the tinnitus-processing auditory system. We therefore asked 23 patients suffering from chronic tinnitus (11 males) to perform specific exercises, aimed at relaxing or tensing the jaw area, which temporarily modulated tinnitus perception. Associated neuronal processes were assessed using magnetencephalography. Results show that chronic tinnitus patients experienced their tinnitus as weaker and less annoying after completion of relaxing compared with tensing exercises. Furthermore, (1) sensorimotor alpha power and alpha-band connectivity directed from the somatosensory to the auditory cortex increased and (2) gamma power in the auditory cortex reduced, which (3) related to reduced tinnitus annoyance perception on a trial-by-trial basis in the relaxed state. No effects were revealed for 23 control participants without tinnitus (six males) performing the same experiment. We conclude that the increase in directed alpha-band connectivity from the somatosensory to the auditory cortex most likely reflects the transmission of inhibition from the somatosensory to the auditory cortex during relaxation, where concurrently tinnitus-related gamma power reduces. We suggest that revealed neuronal processes are transferable to other tinnitus-modulating systems beyond the sensorimotor one that is involved in attentional or emotional tinnitus modulation and provides deeper mechanistic insights into how and through which channels phantom sound perception might be modulated on a neuronal level.
Collapse
Affiliation(s)
- Anne Sabados
- Departments of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany
- Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Cora Kim
- Departments of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany
- Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stefan Rampp
- Departments of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany
- Neuroradiology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Elisabeth Bergherr
- Chair of Spatial Data Science and Statistical Learning, Georg-August University Göttingen, Göttingen 37073, Germany
| | - Michael Buchfelder
- Departments of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Oliver Schnell
- Departments of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Nadia Müller-Voggel
- Departments of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
2
|
Li H, Wang Y, Yan G, Sun Y, Tanabe S, Liu CC, Quigg MS, Zhang T. A Bayesian State-Space Approach to Mapping Directional Brain Networks. J Am Stat Assoc 2021. [DOI: 10.1080/01621459.2020.1865985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Huazhang Li
- Department of Statistics, University of Virginia, Charlottesville, VA
| | - Yaotian Wang
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA
| | - Guofen Yan
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Yinge Sun
- Department of Statistics, University of Virginia, Charlottesville, VA
| | - Seiji Tanabe
- Department of Psychology, University of Virginia, Charlottesville, VA
| | - Chang-Chia Liu
- Department of Neurosurgery, University of Virginia, Charlottesville, VA
| | - Mark S. Quigg
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Tingting Zhang
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
3
|
Raza MU, Sivarao DV. Test-retest reliability of tone- and 40 Hz train-evoked gamma oscillations in female rats and their sensitivity to low-dose NMDA channel blockade. Psychopharmacology (Berl) 2021; 238:2325-2334. [PMID: 33944972 DOI: 10.1007/s00213-021-05856-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
RATIONALE Schizophrenia patients consistently show deficits in sensory-evoked broadband gamma oscillations and click-evoked entrainment at 40 Hz, called the 40-Hz auditory steady-state response (ASSR). Since such evoked oscillations depend on cortical N-methyl D-aspartic acid (NMDA)-mediated network activity, they can serve as pharmacodynamic biomarkers in the preclinical and clinical development of drug candidates engaging these circuits. However, there are few test-retest reliability data in preclinical species, a prerequisite for within-subject testing paradigms. OBJECTIVE We investigated the long-term psychometric stability of these measures in a rodent model. METHODS Female rats with chronic epidural implants were used to record tone- and 40 Hz click-evoked responses at multiple time points and across six sessions, spread over 3 weeks. We assessed reliability using intraclass correlation coefficients (ICC). Separately, we used mixed-effects ANOVA to examine time and session effects. Individual subject variability was determined using the coefficient of variation (CV). Lastly, to illustrate the importance of long-term measure stability for within-subject testing design, we used low to moderate doses of an NMDA antagonist MK801 (0.025-0.15 mg/kg) to disrupt the evoked response. RESULTS We found that 40-Hz ASSR showed good reliability (ICC=0.60-0.75), while the reliability of tone-evoked gamma ranged from poor to good (0.33-0.67). We noted time but no session effects. Subjects showed a lower variance for ASSR over tone-evoked gamma. Both measures were dose-dependently attenuated by NMDA antagonism. CONCLUSION Overall, while both evoked gamma measures use NMDA transmission, 40-Hz ASSR showed superior psychometric properties of higher ICC and lower CV, relative to tone-evoked gamma.
Collapse
Affiliation(s)
- Muhammad Ummear Raza
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, VA Building 7, Room 324, Maple Ave, Johnson City, TN, 37604, USA
| | - Digavalli V Sivarao
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, VA Building 7, Room 324, Maple Ave, Johnson City, TN, 37604, USA.
| |
Collapse
|
4
|
Vázquez-Marrufo M, Del Barco-Gavala A, Galvao-Carmona A, Martín-Clemente R. Reliability analysis of individual visual P1 and N1 maps indicates the heterogeneous topographies involved in early visual processing among human subjects. Behav Brain Res 2020; 397:112930. [PMID: 32987058 DOI: 10.1016/j.bbr.2020.112930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
There is a lack of studies regarding the reliability of the event-related components (ERPs) of an electroencephalogram (EEG) used to assess cognitive processing in human subjects. To explore the reliability scores for the P1 and N1 components in two sessions (separated by an average of 116 days), twenty subjects performed a visual lateralized detection paradigm and EEG recording (58 channels) were employed. The session factor did not modulate the P1/N1 latencies. The visual field factor (left (LVF) or right (RVF)) was a determinant for the P1 and N1 topographical distributions as shown in previous studies. Moreover, topographical maps of the grand average showed a very strong correlation level between sessions (>0.9). Finally, individual maps demonstrated that the classic contralateral pattern for the P1 and N1 components was not always present in all subjects. In particular, compared to the N1 component, the P1 component exhibited a more complex set of individual topographical distributions, revealing that some steps are more heterogeneous among human subjects in early visual processing.
Collapse
Affiliation(s)
- Manuel Vázquez-Marrufo
- Experimental Psychology Department, Faculty of Psychology, University of Seville, Calle Camilo José Cela s/n, Seville, Spain.
| | - Alberto Del Barco-Gavala
- Experimental Psychology Department, Faculty of Psychology, University of Seville, Calle Camilo José Cela s/n, Seville, Spain
| | - Alejandro Galvao-Carmona
- Department of Psychology, Universidad Loyola Andalucía, Av. de las Universidades, 41704, Dos Hermanas, Seville, Spain
| | - Rubén Martín-Clemente
- Signal Processing and Communications Department, Higher Technical School of Engineering, University of Seville, Camino de los Descubrimientos, s/n, 41092, Seville, Spain
| |
Collapse
|
5
|
Zhang T, Sun Y, Li H, Yan G, Tanabe S, Miao R, Wang Y, Caffo BS, Quigg MS. Bayesian inference of a directional brain network model for intracranial EEG data. Comput Stat Data Anal 2020. [DOI: 10.1016/j.csda.2019.106847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Li H, Wang Y, Tanabe S, Sun Y, Yan G, Quigg MS, Zhang T. Mapping epileptic directional brain networks using intracranial EEG data. Biostatistics 2019; 22:613-628. [PMID: 31879751 DOI: 10.1093/biostatistics/kxz056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 11/13/2022] Open
Abstract
The human brain is a directional network system, in which brain regions are network nodes and the influence exerted by one region on another is a network edge. We refer to this directional information flow from one region to another as directional connectivity. Seizures arise from an epileptic directional network; abnormal neuronal activities start from a seizure onset zone and propagate via a network to otherwise healthy brain regions. As such, effective epilepsy diagnosis and treatment require accurate identification of directional connections among regions, i.e., mapping of epileptic patients' brain networks. This article aims to understand the epileptic brain network using intracranial electroencephalographic data-recordings of epileptic patients' brain activities in many regions. The most popular models for directional connectivity use ordinary differential equations (ODE). However, ODE models are sensitive to data noise and computationally costly. To address these issues, we propose a high-dimensional state-space multivariate autoregression (SSMAR) model for the brain's directional connectivity. Different from standard multivariate autoregression and SSMAR models, the proposed SSMAR features a cluster structure, where the brain network consists of several clusters of densely connected brain regions. We develop an expectation-maximization algorithm to estimate the proposed model and use it to map the interregional networks of epileptic patients in different seizure stages. Our method reveals the evolution of brain networks during seizure development.
Collapse
Affiliation(s)
- Huazhang Li
- Department of Statistics, University of Virginia 148 Amphitheater Way, Charlottesville, VA 22904-4135, USA
| | - Yaotian Wang
- Department of Statistics, University of Virginia 148 Amphitheater Way, Charlottesville, VA 22904-4135, USA
| | - Seiji Tanabe
- Department of Statistics, University of Virginia 148 Amphitheater Way, Charlottesville, VA 22904-4135, USA
| | - Yinge Sun
- Department of Statistics, University of Virginia 148 Amphitheater Way, Charlottesville, VA 22904-4135, USA
| | - Guofen Yan
- Department of Statistics, University of Virginia 148 Amphitheater Way, Charlottesville, VA 22904-4135, USA
| | - Mark S Quigg
- Department of Statistics, University of Virginia 148 Amphitheater Way, Charlottesville, VA 22904-4135, USA
| | - Tingting Zhang
- Department of Statistics, University of Virginia 148 Amphitheater Way, Charlottesville, VA 22904-4135, USA
| |
Collapse
|
7
|
Iivanainen J, Zetter R, Parkkonen L. Potential of on-scalp MEG: Robust detection of human visual gamma-band responses. Hum Brain Mapp 2019; 41:150-161. [PMID: 31571310 PMCID: PMC7267937 DOI: 10.1002/hbm.24795] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/09/2019] [Accepted: 09/03/2019] [Indexed: 11/25/2022] Open
Abstract
Electrophysiological signals recorded intracranially show rich frequency content spanning from near‐DC to hundreds of hertz. Noninvasive electromagnetic signals measured with electroencephalography (EEG) or magnetoencephalography (MEG) typically contain less signal power in high frequencies than invasive recordings. Particularly, noninvasive detection of gamma‐band activity (>30 Hz) is challenging since coherently active source areas are small at such frequencies and the available imaging methods have limited spatial resolution. Compared to EEG and conventional SQUID‐based MEG, on‐scalp MEG should provide substantially improved spatial resolution, making it an attractive method for detecting gamma‐band activity. Using an on‐scalp array comprised of eight optically pumped magnetometers (OPMs) and a conventional whole‐head SQUID array, we measured responses to a dynamic visual stimulus known to elicit strong gamma‐band responses. OPMs had substantially higher signal power than SQUIDs, and had a slightly larger relative gamma‐power increase over the baseline. With only eight OPMs, we could obtain gamma‐activity source estimates comparable to those of SQUIDs at the group level. Our results show the feasibility of OPMs to measure gamma‐band activity. To further facilitate the noninvasive detection of gamma‐band activity, the on‐scalp OPM arrays should be optimized with respect to sensor noise, the number of sensors and intersensor spacing.
Collapse
Affiliation(s)
- Joonas Iivanainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Rasmus Zetter
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Aalto Neuroimaging, Aalto University, Espoo, Finland
| |
Collapse
|
8
|
Baltus A, Vosskuhl J, Boetzel C, Herrmann CS. Transcranial alternating current stimulation modulates auditory temporal resolution in elderly people. Eur J Neurosci 2018; 51:1328-1338. [PMID: 29754449 DOI: 10.1111/ejn.13940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/23/2018] [Indexed: 11/28/2022]
Abstract
Recent research provides evidence for a functional role of brain oscillations for perception. For example, auditory temporal resolution seems to be linked to individual gamma frequency of auditory cortex. Individual gamma frequency not only correlates with performance in between-channel gap detection tasks but can be modulated via auditory transcranial alternating current stimulation. Modulation of individual gamma frequency is accompanied by an improvement in gap detection performance. Aging changes electrophysiological frequency components and sensory processing mechanisms. Therefore, we conducted a study to investigate the link between individual gamma frequency and gap detection performance in elderly people using auditory transcranial alternating current stimulation. In a within-subject design, twelve participants were electrically stimulated with two individualized transcranial alternating current stimulation frequencies: 3 Hz above their individual gamma frequency (experimental condition) and 4 Hz below their individual gamma frequency (control condition), while they were performing a between-channel gap detection task. As expected, individual gamma frequencies correlated significantly with gap detection performance at baseline and in the experimental condition, transcranial alternating current stimulation modulated gap detection performance. In the control condition, stimulation did not modulate gap detection performance. In addition, in elderly, the effect of transcranial alternating current stimulation on auditory temporal resolution seems to be dependent on endogenous frequencies in auditory cortex: Elderlies with slower individual gamma frequencies and lower auditory temporal resolution profit from auditory transcranial alternating current stimulation and show increased gap detection performance during stimulation. Our results strongly suggest individualized transcranial alternating current stimulation protocols for successful modulation of performance.
Collapse
Affiliation(s)
- Alina Baltus
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Johannes Vosskuhl
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Cindy Boetzel
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph Siegfried Herrmann
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
9
|
Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG. Sci Rep 2017; 7:14262. [PMID: 29079768 PMCID: PMC5660237 DOI: 10.1038/s41598-017-14452-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
High gamma band (>50 Hz) activity is a key oscillatory phenomenon of brain activation. However, there has not been a non-invasive method established to detect language-related high gamma band activity. We used a 160-channel whole-head magnetoencephalography (MEG) system equipped with superconducting quantum interference device (SQUID) gradiometers to non-invasively investigate neuromagnetic activities during silent reading and verb generation tasks in 15 healthy participants. Individual data were divided into alpha (8–13 Hz), beta (13–25 Hz), low gamma (25–50 Hz), and high gamma (50–100 Hz) bands and analysed with the beamformer method. The time window was consecutively moved. Group analysis was performed to delineate common areas of brain activation. In the verb generation task, transient power increases in the high gamma band appeared in the left middle frontal gyrus (MFG) at the 550–750 ms post-stimulus window. We set a virtual sensor on the left MFG for time-frequency analysis, and high gamma event-related synchronization (ERS) induced by a verb generation task was demonstrated at 650 ms. In contrast, ERS in the high gamma band was not detected in the silent reading task. Thus, our study successfully non-invasively measured language-related prefrontal high gamma band activity.
Collapse
|
10
|
Zhang T, Yin Q, Caffo B, Sun Y, Boatman-Reich D. Bayesian inference of high-dimensional, cluster-structured ordinary differential equation models with applications to brain connectivity studies. Ann Appl Stat 2017. [DOI: 10.1214/17-aoas1021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Baltus A, Herrmann CS. The importance of individual frequencies of endogenous brain oscillations for auditory cognition - A short review. Brain Res 2015; 1640:243-50. [PMID: 26453287 DOI: 10.1016/j.brainres.2015.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/15/2015] [Accepted: 09/25/2015] [Indexed: 10/22/2022]
Abstract
Oscillatory EEG activity in the human brain with frequencies in the gamma range (approx. 30-80Hz) is known to be relevant for a large number of cognitive processes. Interestingly, each subject reveals an individual frequency of the auditory gamma-band response (GBR) that coincides with the peak in the auditory steady state response (ASSR). A common resonance frequency of auditory cortex seems to underlie both the individual frequency of the GBR and the peak of the ASSR. This review sheds light on the functional role of oscillatory gamma activity for auditory processing. For successful processing, the auditory system has to track changes in auditory input over time and store information about past events in memory which allows the construction of auditory objects. Recent findings support the idea of gamma oscillations being involved in the partitioning of auditory input into discrete samples to facilitate higher order processing. We review experiments that seem to suggest that inter-individual differences in the resonance frequency are behaviorally relevant for gap detection and speech processing. A possible application of these resonance frequencies for brain computer interfaces is illustrated with regard to optimized individual presentation rates for auditory input to correspond with endogenous oscillatory activity. This article is part of a Special Issue entitled SI: Auditory working memory.
Collapse
Affiliation(s)
- Alina Baltus
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph Siegfried Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
12
|
Zhang T, Wu J, Li F, Caffo B, Boatman-Reich D. A Dynamic Directional Model for Effective Brain Connectivity using Electrocorticographic (ECoG) Time Series. J Am Stat Assoc 2015; 110:93-106. [PMID: 25983358 DOI: 10.1080/01621459.2014.988213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We introduce a dynamic directional model (DDM) for studying brain effective connectivity based on intracranial electrocorticographic (ECoG) time series. The DDM consists of two parts: a set of differential equations describing neuronal activity of brain components (state equations), and observation equations linking the underlying neuronal states to observed data. When applied to functional MRI or EEG data, DDMs usually have complex formulations and thus can accommodate only a few regions, due to limitations in spatial resolution and/or temporal resolution of these imaging modalities. In contrast, we formulate our model in the context of ECoG data. The combined high temporal and spatial resolution of ECoG data result in a much simpler DDM, allowing investigation of complex connections between many regions. To identify functionally segregated sub-networks, a form of biologically economical brain networks, we propose the Potts model for the DDM parameters. The neuronal states of brain components are represented by cubic spline bases and the parameters are estimated by minimizing a log-likelihood criterion that combines the state and observation equations. The Potts model is converted to the Potts penalty in the penalized regression approach to achieve sparsity in parameter estimation, for which a fast iterative algorithm is developed. The methods are applied to an auditory ECoG dataset.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Statistics, University of Virginia, Charlottesville, VA, USA
| | - Jingwei Wu
- Department of Statistics, University of Virginia, Charlottesville, VA, USA
| | - Fan Li
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
13
|
Long LL, Bunce JG, Chrobak JJ. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus. Front Syst Neurosci 2015; 9:37. [PMID: 25852496 PMCID: PMC4360780 DOI: 10.3389/fnsys.2015.00037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/23/2015] [Indexed: 01/03/2023] Open
Abstract
Hippocampal theta has been related to locomotor speed, attention, anxiety, sensorimotor integration and memory among other emergent phenomena. One difficulty in understanding the function of theta is that the hippocampus (HPC) modulates voluntary behavior at the same time that it processes sensory input. Both functions are correlated with characteristic changes in theta indices. The current review highlights a series of studies examining theta local field potential (LFP) signals across the septotemporal or longitudinal axis of the HPC. While the theta signal is coherent throughout the entirety of the HPC, the amplitude, but not the frequency, of theta varies significantly across its three-dimensional expanse. We suggest that the theta signal offers a rich vein of information about how distributed neuronal ensembles support emergent function. Further, we speculate that emergent function across the long axis varies with respect to spatiotemporal scale. Thus, septal HPC processes details of the proximal spatiotemporal environment while more temporal aspects process larger spaces and wider time-scales. The degree to which emergent functions are supported by the synchronization of theta across the septotemporal axis is an open question. Our working model is that theta synchrony serves to bind ensembles representing varying resolutions of spatiotemporal information at interdependent septotemporal areas of the HPC. Such synchrony and cooperative interactions along the septotemporal axis likely support memory formation and subsequent consolidation and retrieval.
Collapse
Affiliation(s)
- Lauren L Long
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut Storrs, CT, USA
| | - Jamie G Bunce
- Neural Systems Lab, Department of Health Sciences, Boston University Boston, MA, USA
| | - James J Chrobak
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
14
|
Korzeniewska A, Cervenka MC, Jouny CC, Perilla JR, Harezlak J, Bergey GK, Franaszczuk PJ, Crone NE. Ictal propagation of high frequency activity is recapitulated in interictal recordings: effective connectivity of epileptogenic networks recorded with intracranial EEG. Neuroimage 2014; 101:96-113. [PMID: 25003814 DOI: 10.1016/j.neuroimage.2014.06.078] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/08/2014] [Accepted: 06/30/2014] [Indexed: 01/08/2023] Open
Abstract
Seizures are increasingly understood to arise from epileptogenic networks across which ictal activity is propagated and sustained. In patients undergoing invasive monitoring for epilepsy surgery, high frequency oscillations have been observed within the seizure onset zone during both ictal and interictal intervals. We hypothesized that the patterns by which high frequency activity is propagated would help elucidate epileptogenic networks and thereby identify network nodes relevant for surgical planning. Intracranial EEG recordings were analyzed with a multivariate autoregressive modeling technique (short-time direct directed transfer function--SdDTF), based on the concept of Granger causality, to estimate the directionality and intensity of propagation of high frequency activity (70-175 Hz) during ictal and interictal recordings. These analyses revealed prominent divergence and convergence of high frequency activity propagation at sites identified by epileptologists as part of the ictal onset zone. In contrast, relatively little propagation of this activity was observed among the other analyzed sites. This pattern was observed in both subdural and depth electrode recordings of patients with focal ictal onset, but not in patients with a widely distributed ictal onset. In patients with focal ictal onsets, the patterns of propagation recorded during pre-ictal (up to 5 min immediately preceding ictal onset) and interictal (more than 24h before and after seizures) intervals were very similar to those recorded during seizures. The ability to characterize epileptogenic networks from interictal recordings could have important clinical implications for epilepsy surgery planning by reducing the need for prolonged invasive monitoring to record spontaneous seizures.
Collapse
Affiliation(s)
- A Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA.
| | - M C Cervenka
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA
| | - C C Jouny
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA
| | - J R Perilla
- Beckman Institute and Department of Physics, University of Illinois Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801, USA
| | - J Harezlak
- Department of Biostatistics, Richard M. Fairbanks School of Public Health and School of Medicine Indiana University, 410 W 10th St., Suite 3000, Indianapolis, IN 46202, USA
| | - G K Bergey
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA
| | - P J Franaszczuk
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA; Human Research and Engineering Directorate, US Army Research Laboratory, 459 Mulberry Point Rd, Aberdeen Proving Ground, MD 21005, USA
| | - N E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Kuś R, Różański PT, Durka PJ. Multivariate matching pursuit in optimal Gabor dictionaries: theory and software with interface for EEG/MEG via Svarog. Biomed Eng Online 2013; 12:94. [PMID: 24059247 PMCID: PMC3849619 DOI: 10.1186/1475-925x-12-94] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Matching pursuit algorithm (MP), especially with recent multivariate extensions, offers unique advantages in analysis of EEG and MEG. METHODS We propose a novel construction of an optimal Gabor dictionary, based upon the metrics introduced in this paper. We implement this construction in a freely available software for MP decomposition of multivariate time series, with a user friendly interface via the Svarog package (Signal Viewer, Analyzer and Recorder On GPL, http://braintech.pl/svarog), and provide a hands-on introduction to its application to EEG. Finally, we describe numerical and mathematical optimizations used in this implementation. RESULTS Optimal Gabor dictionaries, based on the metric introduced in this paper, for the first time allowed for a priori assessment of maximum one-step error of the MP algorithm. Variants of multivariate MP, implemented in the accompanying software, are organized according to the mathematical properties of the algorithms, relevant in the light of EEG/MEG analysis. Some of these variants have been successfully applied to both multichannel and multitrial EEG and MEG in previous studies, improving preprocessing for EEG/MEG inverse solutions and parameterization of evoked potentials in single trials; we mention also ongoing work and possible novel applications. CONCLUSIONS Mathematical results presented in this paper improve our understanding of the basics of the MP algorithm. Simple introduction of its properties and advantages, together with the accompanying stable and user-friendly Open Source software package, pave the way for a widespread and reproducible analysis of multivariate EEG and MEG time series and novel applications, while retaining a high degree of compatibility with the traditional, visual analysis of EEG.
Collapse
Affiliation(s)
- Rafał Kuś
- Faculty of Physics, University of Warsaw, ul, Hoża 69, 00-681 Warszawa, Poland.
| | | | | |
Collapse
|
16
|
Muthukumaraswamy SD. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci 2013; 7:138. [PMID: 23596409 PMCID: PMC3625857 DOI: 10.3389/fnhum.2013.00138] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/28/2013] [Indexed: 12/13/2022] Open
Abstract
In recent years high-frequency brain activity in the gamma-frequency band (30-80 Hz) and above has become the focus of a growing body of work in MEG/EEG research. Unfortunately, high-frequency neural activity overlaps entirely with the spectral bandwidth of muscle activity (~20-300 Hz). It is becoming appreciated that artifacts of muscle activity may contaminate a number of non-invasive reports of high-frequency activity. In this review, the spectral, spatial, and temporal characteristics of muscle artifacts are compared with those described (so far) for high-frequency neural activity. In addition, several of the techniques that are being developed to help suppress muscle artifacts in MEG/EEG are reviewed. Suggestions are made for the collection, analysis, and presentation of experimental data with the aim of reducing the number of publications in the future that may contain muscle artifacts.
Collapse
|
17
|
Cervenka MC, Corines J, Boatman-Reich DF, Eloyan A, Sheng X, Franaszczuk PJ, Crone NE. Electrocorticographic functional mapping identifies human cortex critical for auditory and visual naming. Neuroimage 2012; 69:267-76. [PMID: 23274183 DOI: 10.1016/j.neuroimage.2012.12.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/21/2012] [Accepted: 12/12/2012] [Indexed: 11/30/2022] Open
Abstract
More comprehensive, and efficient, mapping strategies are needed to avoid post-operative language impairments in patients undergoing epilepsy surgery. Conservative resection of dominant anterior frontal or temporal cortex frequently results in post-operative naming deficits despite standard pre-operative electrocortical stimulation mapping of visual object (picture) naming. Naming to auditory description may better simulate word retrieval in human conversation but is not typically tested, in part due to the time demands of electrocortical stimulation mapping. Electrocorticographic high gamma (60-150 Hz) activity, recorded simultaneously through the same electrodes used for stimulation mapping, has recently been used to map brain function more efficiently, and has at times predicted deficits not anticipated based on stimulation mapping alone. The present study investigated electrocorticographic mapping of visual object naming and auditory descriptive naming within conservative dominant temporal or frontal lobe resection boundaries in 16 patients with 933 subdural electrodes implanted for epilepsy surgery planning. A logistic regression model showed that electrodes within traditional conservative dominant frontal or temporal lobe resection boundaries were significantly more likely to record high gamma activity during auditory descriptive naming than during visual object naming. Eleven patients ultimately underwent resection and 7 demonstrated post-operative language deficits not anticipated based on electrocortical stimulation mapping alone. Four patients with post-operative deficits underwent a resection that included sites where high gamma activity was observed during naming. These findings indicate that electrocorticographic mapping of auditory descriptive naming may reduce the risk of permanent post-operative language deficits following dominant temporal or frontal resection.
Collapse
|