1
|
Millet GY, Bertrand MF, Lapole T, Féasson L, Rozand V, Hupin D. Measuring objective fatigability and autonomic dysfunction in clinical populations: How and why? Front Sports Act Living 2023; 5:1140833. [PMID: 37065809 PMCID: PMC10101442 DOI: 10.3389/fspor.2023.1140833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Fatigue is a major symptom in many diseases, often among the most common and severe ones and may last for an extremely long period. Chronic fatigue impacts quality of life, reduces the capacity to perform activities of daily living, and has socioeconomical consequences such as impairing return to work. Despite the high prevalence and deleterious consequences of fatigue, little is known about its etiology. Numerous causes have been proposed to explain chronic fatigue. They encompass psychosocial and behavioral aspects (e.g., sleep disorders) and biological (e.g., inflammation), hematological (e.g., anemia) as well as physiological origins. Among the potential causes of chronic fatigue is the role of altered acute fatigue resistance, i.e. an increased fatigability for a given exercise, that is related to physical deconditioning. For instance, we and others have recently evidenced that relationships between chronic fatigue and increased objective fatigability, defined as an abnormal deterioration of functional capacity (maximal force or power), provided objective fatigability is appropriately measured. Indeed, in most studies in the field of chronic diseases, objective fatigability is measured during single-joint, isometric exercises. While those studies are valuable from a fundamental science point of view, they do not allow to test the patients in ecological situations when the purpose is to search for a link with chronic fatigue. As a complementary measure to the evaluation of neuromuscular function (i.e., fatigability), studying the dysfunction of the autonomic nervous system (ANS) is also of great interest in the context of fatigue. The challenge of evaluating objective fatigability and ANS dysfunction appropriately (i.e.,. how?) will be discussed in the first part of the present article. New tools recently developed to measure objective fatigability and muscle function will be presented. In the second part of the paper, we will discuss the interest of measuring objective fatigability and ANS (i.e. why?). Despite the beneficial effects of physical activity in attenuating chronic fatigue have been demonstrated, a better evaluation of fatigue etiology will allow to personalize the training intervention. We believe this is key in order to account for the complex, multifactorial nature of chronic fatigue.
Collapse
Affiliation(s)
- Guillaume Y. Millet
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
- Institut Universitaire de France (IUF), Paris, France
- Correspondence: Guillaume Y. Millet
| | - Mathilde F. Bertrand
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
| | - Thomas Lapole
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
| | - Léonard Féasson
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
- Service de physiologie clinique et de l'exercice, CHU de Saint-Étienne, Saint-Étienne, France
- Centre Référent Maladies Neuromusculaires rares - Euro-NmD, CHU de Saint-Étienne, Saint-Étienne, France
| | - Vianney Rozand
- Université Jean Monnet Saint-Etienne, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, F-42023, Saint-Etienne, Lyon, France
| | - David Hupin
- Service de physiologie clinique et de l'exercice, CHU de Saint-Étienne, Saint-Étienne, France
- Jean Monnet University Saint-Etienne, Mines Saint-Etienne, University hospital of Saint-Etienne, INSERM, SAINBIOSE, U1059, DVH team, Saint-Etienne, France
| |
Collapse
|
2
|
Voet NBM, Saris CGJ, Thijssen DHJ, Bastiaans V, Sluijs DE, Janssen MMHP. Surface Electromyography Thresholds as a Measure for Performance Fatigability During Incremental Cycling in Patients With Neuromuscular Disorders. Front Physiol 2022; 13:821584. [PMID: 35370798 PMCID: PMC8969223 DOI: 10.3389/fphys.2022.821584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
In healthy persons, there is an excellent relation between the timing of the (two) surface electromyography (sEMG) thresholds and the (two) ventilatory thresholds during exercise. The primary aim of this study was to determine the relative timing of both sEMG and ventilatory thresholds in patients with neuromuscular disorders compared with healthy subjects during a maximal ergospirometry cycling test. We hypothesized that in patients with neuromuscular disorders, the sEMG thresholds would occur relatively earlier in time than the ventilatory thresholds, compared to healthy subjects, because performance fatigability occurs more rapidly. In total, 24 healthy controls and 32 patients with a neuromuscular disorder performed a cardiopulmonary exercise test on a bicycle using a 10-min ramp protocol, during which we collected ergospirometry data: power at both ventilatory and sEMG thresholds, and sEMG data of lower leg muscles. In line with our hypothesis, normalized values for all thresholds were lower for patients than healthy subjects. These differences were significant for the first ventilatory (p = 0.008) and sEMG threshold (p < 0.001) but not for the second sEMG (p = 0.053) and ventilatory threshold (p = 0.238). Most parameters for test–retest reliability of all thresholds did not show any fixed bias, except for the second ventilatory threshold. The feasibility of the sEMG thresholds was lower than the ventilatory thresholds, particularly of the first sEMG threshold. As expected, the sEMG thresholds, particularly the first threshold, occurred relatively earlier in time than the ventilatory thresholds in patients compared with healthy subjects. A possible explanation could be (a combination of) a difference in fiber type composition, disuse, and limited muscle-specific force in patients with neuromuscular disorders. sEMG measurements during submaximal dynamic exercises are needed to generalize the measurements to daily life activities for future use in prescribing and evaluating rehabilitation interventions.
Collapse
Affiliation(s)
- Nicoline B. M. Voet
- Department of Rehabilitation, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
- Klimmendaal, Rehabilitation Center, Arnhem, Netherlands
- *Correspondence: Nicoline B. M. Voet,
| | - Christiaan G. J. Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Dick H. J. Thijssen
- Department of Physiology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Vincent Bastiaans
- Sports Medicine Center, HAN Seneca, HAN University of Applied Sciences, Nijmegen, Netherlands
| | - David E. Sluijs
- Sports Medicine Center, HAN Seneca, HAN University of Applied Sciences, Nijmegen, Netherlands
| | - Mariska M. H. P. Janssen
- Department of Rehabilitation, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
- Klimmendaal, Rehabilitation Center, Arnhem, Netherlands
| |
Collapse
|
3
|
Trost JP, Chen M, Stark MM, Hodges JS, Richter S, Lindsay A, Warren GL, Lowe DA, Kimberley TJ. Voluntary and magnetically evoked muscle contraction protocol in males with Duchenne muscular dystrophy: Safety, feasibility, reliability, and validity. Muscle Nerve 2021; 64:190-198. [PMID: 33974714 DOI: 10.1002/mus.27323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 01/21/2023]
Abstract
INTRODUCTION/AIMS Clinical trials addressing treatments for Duchenne muscular dystrophy (DMD) require reliable and valid measurement of muscle contractile function across all disease severity levels. In this work we aimed to evaluate a protocol combining voluntary and evoked contractions to measure strength and excitability of wrist extensor muscles for safety, feasibility, reliability, and discriminant validity between males with DMD and controls. METHODS Wrist extensor muscle strength and excitability were assessed in males with DMD (N = 10; mean ± standard deviation: 15.4 ± 5.9 years of age), using the Brooke Upper Extremity Rating Scale (scored 1-6), and age-matched healthy male controls (N = 15; 15.5 ± 5.0 years of age). Torque and electromyographic (EMG) measurements were analyzed under maximum voluntary and stimulated conditions at two visits. RESULTS A protocol of multiple maximal voluntary contractions (MVCs) and evoked twitch contractions was feasible and safe, with 96% of the participants completing the protocol and having a less than 7% strength decrement on either measure for both DMD patients and controls (P ≥ .074). Reliability was excellent for voluntary and evoked measurements of torque and EMG (intraclass correlation coefficient [ICC] over 0.90 and over 0.85 within and between visits, respectively). Torque, EMG, and timing of twitch-onset measurements discriminated between DMD and controls (P < .001). Twitch contraction time did not differ significantly between groups (P = .10). DISCUSSION Findings from this study show that the protocol is a safe, feasible, reliable, and a valid method to measure strength and excitability of wrist extensors in males with DMD.
Collapse
Affiliation(s)
- Joyceann P Trost
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mo Chen
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Molly M Stark
- Department of Neurology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - James S Hodges
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sara Richter
- Professional Data Analysts, Minneapolis, Minnesota, USA
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Gordon L Warren
- Department of Physical Therapy, Georgia State University, Atlanta, Georgia, USA
| | - Dawn A Lowe
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Teresa J Kimberley
- Division of Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,School of Health and Rehabilitation Sciences, Department of Physical Therapy, MGH Institute of Health Professions, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Abstract
Neuromuscular fatigue (NMF) is usually assessed non-invasively in healthy, athletic or clinical populations with the combination of voluntary and evoked contractions. Although it might appear relatively straightforward to magnetically or electrically stimulate at different levels (cortical/spinal/muscle) and to measure mechanical and electromyographic responses to quantify neuromuscular adjustments due to sustained/repeated muscle contractions, there are drawbacks that researchers and clinicians need to bear in mind. The aim of this opinion paper is to highlight the pitfalls inevitably faced when NMF is quantified. The first problem might arise from the definition of fatigue itself and the parameter(s) used to measure it; for instance, measuring power vs. isometric torque may lead to different conclusions. Another potential limitation is the delay between exercise termination and the evaluation of neuromuscular function; the possible underestimation of exercise-induced neural and contractile impairment and misinterpretation of fatigue etiology will be discussed, as well as solutions recently proposed to overcome this problem. Quantification of NMF can also be biased (or not feasible) because of the techniques themselves (e.g. results may depend on stimulation intensity for transcranial magnetic stimulation) or the way data are analyzed (e.g. M wave peak-to-peak vs first phase amplitude). When available, alternatives recently suggested in the literature to overcome these pitfalls are considered and recommendations about the best practices to assess NMF (e.g. paying attention to the delay between exercise and testing, adapting the method to the characteristics of the population to be tested and considering the limitations associated with the techniques) are proposed.
Collapse
Affiliation(s)
- Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Guillaume Y Millet
- Univ Lyon, UJM-Saint-Etienne, Inter-University Laboratory of Human Movement Biology, EA 7424, 42023, Saint-Étienne, France. .,Faculty of Kinesiology, University of Calgary, Calgary, Canada.
| |
Collapse
|
5
|
Peterson DS, Moore A, Ofori E. Performance fatigability during gait in adults with Charcot-Marie-Tooth disease. Gait Posture 2021; 85:232-237. [PMID: 33618167 DOI: 10.1016/j.gaitpost.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Fatigue is common in people with Charcot-Marie-Tooth (pwCMT) disease. However, no studies have characterized performance fatigability during gait in this population. Characterizing performance fatigability during gait, and assessing its relation to life satisfaction could improve understanding and treatment of mobility challenges in pwCMT. RESEARCH QUESTIONS How do gait outcomes change with fatigue in pwCMT? Do these changes relate to life satisfaction? METHODS 31 pwCMT completed a 6-minute, fast-as-possible walk while gait outcomes were captured via inertial sensors. Gait outcomes were separated into six sequential bins of equal size. The mean value, variability, and asymmetry (step time only) of outcomes were calculated for each bin. Perceived fatigue and general life satisfaction were assessed via questionnaire. RESULTS Of the five mean gait outcomes measured, four showed statistically significant changes over the 6-minute fast-as-possible walk: velocity (reduced; p = 0.008); cadence (reduced; p < 0.001), step time (increased; p < 0.001), and trunk ROM (increased; p = 0.032). Of the four variability and one asymmetry outcomes, only stride length variability changed during the walking task (p = 0.015), decreasing from bins 1-2, and remaining stable for bins 2-6. Changes in velocity, cadence, step time were related to general life satisfaction (0.038 < ps<0.04), but not perceived fatigue (ps>0.343). SIGNIFICANCE pwCMT exhibit statistically significant changes in mean gait outcomes, but not variability outcomes, across a 6-minute, fast-as-possible walking bout. Changes correlated to life satisfaction, suggesting performance fatigability during gait could be a target for rehabilitation for pwCMT. Perceived fatigue did not correlate to gait fatigue, underscoring the differentiation between perceived fatigue and performance fatigability.
Collapse
Affiliation(s)
- Daniel S Peterson
- Arizona State University, College of Health Solutions, 425 N 5th St., Phoenix, AZ, 85004, USA; Phoenix VA Medical Center, 650 Indian School Rd, Phoenix, AZ, 85012, USA.
| | - Allison Moore
- Hereditary Neuropathy Foundation, New York, NY, 10016, USA
| | - Edward Ofori
- Arizona State University, College of Health Solutions, 425 N 5th St., Phoenix, AZ, 85004, USA
| |
Collapse
|
6
|
Increased resistance towards fatigability in patients with facioscapulohumeral muscular dystrophy. Eur J Appl Physiol 2021; 121:1617-1629. [PMID: 33646424 PMCID: PMC8144151 DOI: 10.1007/s00421-021-04650-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/19/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE In facioscapulohumeral muscular dystrophy (FSHD) fatigue is a major complaint. We aimed to investigate whether during isometric sustained elbow flexions, performance fatigability indexes differ in patients with FSHD with respect to healthy controls. METHODS Seventeen patients with FSHD and seventeen healthy controls performed two isometric flexions of the dominant biceps brachii at 20% of their maximal voluntary contraction (MVC) for 2 min and then at 60% MVC until exhaustion. Muscle weakness was characterized as a percentage of predicted values. Maximal voluntary strength, endurance time and performance fatigability indices (mean frequency of the power spectrum (MNF), muscle fiber conduction velocity (CV) and fractal dimension (FD)), extracted from the surface electromyogram signal (sEMG) were compared between the two groups. RESULTS In patients with FSHD, maximal voluntary strength was 68.7% of predicted value (p < 0.01). Compared to healthy controls, FSHD patients showed reduced MVC (p < 0.001; r = 0.62) and lower levels of performance fatigability, characterized by reduced rate of changes in MNF (p < 0.01; r = 0.56), CV (p < 0.05; 0.37) and FD (p < 0.001; r = 0.51) and increased endurance time (p < 0.001; r = 0.63), during the isometric contraction at 60% MVC. CONCLUSION A decreased reduction in the slopes of all the considered sEMG parameters during sustained isometric elbow flexions suggests that patients with FSHD experience lower levels of performance fatigability compared to healthy controls.
Collapse
|
7
|
Abe G, Oyama H, Liao Z, Honda K, Yashima K, Asao A, Izumi SI. Difference in Pain and Discomfort of Comparable Wrist Movements Induced by Magnetic or Electrical Stimulation for Peripheral Nerves in the Dorsal Forearm. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2020; 13:439-447. [PMID: 33376417 PMCID: PMC7755354 DOI: 10.2147/mder.s271258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Both repetitive peripheral magnetic stimulation (rPMS) and transcutaneous electrical current stimulation (TES) could elicit the limb movements; it is still unclear how subjective sensation is changed according to the amount of limb movements. We investigated the pain and discomfort induced by newly developed rPMS and TES of peripheral nerves in the dorsal forearm. Methods The subjects were 12 healthy adults. The stimulus site was the right dorsal forearm; thus, when stimulated, wrist dorsiflexion was induced. The rPMS was delivered by the new stimulator, Pathleader at 10 stimulus intensity levels, and TES intensity was in 1-mA increments. The duration of each stimulation was 2 s. The analysis parameters were subjective pain and discomfort, measured by a numerical rating scale. The rating scale at corresponding levels of integrated range of movement (iROM) induced by rPMS or TES was compared. The subjective values were analyzed by two-way repeated measures ANOVA with the stimulus conditions (rPMS, TES) and the seven levels of iROM (20-140 ºs). Results In the rPMS experiments, stimuli were administered to all subjects at all stimulus intensities. In the TES experiments, none of the subjects dropped out between 1 and 16 mA, but there were dropouts at each of the intensities as follows: 1 subject at 17 mA, 20 mA, 22 mA, 23 mA, 27 mA, 29 mA and 2 subjects at 21 mA, 24 mA, 26 mA. The main effects of the stimulus conditions and iROM were significant for pain and discomfort. Post hoc analysis demonstrated that pain and discomfort in rPMS were significantly lower compared to TES when the iROM was above 60 ºs and 80 ºs, respectively. Conclusion New rPMS stimulator, Pathleader, caused less pain and discomfort than TES, but this was only evident when comparatively large joint movements occurred.
Collapse
Affiliation(s)
- Genji Abe
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Rehabilitation, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai, Miyagi, Japan
| | - Hideki Oyama
- Department of Physical Medicine and Rehabilitation, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Zhenyi Liao
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keita Honda
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | - Akihiko Asao
- Department of Occupational Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Physical Medicine and Rehabilitation, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
8
|
Marillier M, Bernard AC, Verges S, Neder JA. The role of peripheral muscle fatigability on exercise intolerance in COPD. Expert Rev Respir Med 2020; 15:117-129. [PMID: 33148059 DOI: 10.1080/17476348.2021.1836964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Exercise limitation in chronic obstructive pulmonary disease (COPD) is multi-factorial; however, growing evidence indicates that muscle dysfunction may contribute in some patients. AREAS COVERED This work outlines current evidence for and against increased peripheral muscle fatigability in COPD through a comprehensive review of relevant literature available on PubMed/MEDLINE until May 2020. The authors first discuss key methodological issues relative to muscle fatigue assessment by non-volitional techniques, particularly magnetic stimulation. The authors then provide a detailed discussion of critical studies to have objectively measured skeletal muscle fatigue in individuals with COPD. EXPERT OPINION Current evidence indicates that localized (knee extension) and cycling exercise are associated with increased quadriceps fatigability in most COPD patients. Increased fatigability, however, has not been consistently found in response to walking, likely reflecting the tendency of 'central' respiratory constraints to overshadow potential functional impairments in the appendicular muscles in this form of exercise. Thus, addressing skeletal muscle abnormalities may be critical to translate improvements in lung mechanics (e.g., due to bronchodilator therapy) into better exercise tolerance. The positive effects of pulmonary rehabilitation on muscle fatigability are particularly encouraging and suggest a role for these measurements to test the efficacy of emerging adjunct training strategies focused on the peripheral muscles.
Collapse
Affiliation(s)
- Mathieu Marillier
- Laboratory of Clinical Exercise Physiology, Queen's University and Kingston General Hospital , Kingston, ON, Canada.,HP2 Laboratory, INSERM U1042, Grenoble Alpes University , Grenoble, France
| | - Anne-Catherine Bernard
- Laboratory of Clinical Exercise Physiology, Queen's University and Kingston General Hospital , Kingston, ON, Canada.,HP2 Laboratory, INSERM U1042, Grenoble Alpes University , Grenoble, France
| | - Samuel Verges
- HP2 Laboratory, INSERM U1042, Grenoble Alpes University , Grenoble, France
| | - J Alberto Neder
- Laboratory of Clinical Exercise Physiology, Queen's University and Kingston General Hospital , Kingston, ON, Canada
| |
Collapse
|
9
|
Lassche S, Voermans NC, Schreuder T, Heerschap A, Küsters B, Ottenheijm CA, Hopman MT, van Engelen BG. Reduced specific force in patients with mild and severe facioscapulohumeral muscular dystrophy. Muscle Nerve 2020; 63:60-67. [PMID: 32959362 PMCID: PMC7821115 DOI: 10.1002/mus.27074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Specific force, that is the amount of force generated per unit of muscle tissue, is reduced in patients with facioscapulohumeral muscular dystrophy (FSHD). The causes of reduced specific force and its relation with FSHD disease severity are unknown. METHODS Quantitative muscle magnetic resonance imaging (MRI), measurement of voluntary maximum force generation and quadriceps force-frequency relationship, and vastus lateralis muscle biopsies were performed in 12 genetically confirmed patients with FSHD and 12 controls. RESULTS Specific force was reduced by ~33% in all FSHD patients independent of disease severity. Quadriceps force-frequency relationship shifted to the right in severe FSHD compared to controls. Fiber type distribution in vastus lateralis muscle biopsies did not differ between groups. CONCLUSIONS Reduced quadriceps specific force is present in all FSHD patients regardless of disease severity or fatty infiltration. Early myopathic changes, including fibrosis, and non-muscle factors, such as physical fatigue and musculoskeletal pain, may contribute to reduced specific force.
Collapse
Affiliation(s)
- Saskia Lassche
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tim Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Coen Ac Ottenheijm
- Department of Physiology, Institute for Cardiovascular Research, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Maria Te Hopman
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Baziel Gm van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Bittel AJ, Sreetama SC, Bittel DC, Horn A, Novak JS, Yokota T, Zhang A, Maruyama R, Rowel Q. Lim K, Jaiswal JK, Chen YW. Membrane Repair Deficit in Facioscapulohumeral Muscular Dystrophy. Int J Mol Sci 2020; 21:E5575. [PMID: 32759720 PMCID: PMC7432481 DOI: 10.3390/ijms21155575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Deficits in plasma membrane repair have been identified in dysferlinopathy and Duchenne Muscular Dystrophy, and contribute to progressive myopathy. Although Facioscapulohumeral Muscular Dystrophy (FSHD) shares clinicopathological features with these muscular dystrophies, it is unknown if FSHD is characterized by plasma membrane repair deficits. Therefore, we exposed immortalized human FSHD myoblasts, immortalized myoblasts from unaffected siblings, and myofibers from a murine model of FSHD (FLExDUX4) to focal, pulsed laser ablation of the sarcolemma. Repair kinetics and success were determined from the accumulation of intracellular FM1-43 dye post-injury. We subsequently treated FSHD myoblasts with a DUX4-targeting antisense oligonucleotide (AON) to reduce DUX4 expression, and with the antioxidant Trolox to determine the role of DUX4 expression and oxidative stress in membrane repair. Compared to unaffected myoblasts, FSHD myoblasts demonstrate poor repair and a greater percentage of cells that failed to repair, which was mitigated by AON and Trolox treatments. Similar repair deficits were identified in FLExDUX4 myofibers. This is the first study to identify plasma membrane repair deficits in myoblasts from individuals with FSHD, and in myofibers from a murine model of FSHD. Our results suggest that DUX4 expression and oxidative stress may be important targets for future membrane-repair therapies.
Collapse
Affiliation(s)
- Adam J. Bittel
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - Sen Chandra Sreetama
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - Daniel C. Bittel
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - Adam Horn
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - James S. Novak
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Science, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, 116 St. & 85 Ave., Edmonton, AB T6G 2R3, Canada; (T.Y.); (R.M.); (K.R.Q.L.)
| | - Aiping Zhang
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
| | - Rika Maruyama
- Department of Medical Genetics, University of Alberta, 116 St. & 85 Ave., Edmonton, AB T6G 2R3, Canada; (T.Y.); (R.M.); (K.R.Q.L.)
| | - Kenji Rowel Q. Lim
- Department of Medical Genetics, University of Alberta, 116 St. & 85 Ave., Edmonton, AB T6G 2R3, Canada; (T.Y.); (R.M.); (K.R.Q.L.)
| | - Jyoti K. Jaiswal
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
- Department of Integrative Systems Biology, Institute for Biomedical Sciences, The George Washington University, 2121 I St. NW, Washington, DC 20052, USA
| | - Yi-Wen Chen
- Research Center for Genetic Medicine, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA; (A.J.B.); (S.C.S.); (D.C.B.); (A.H.); (J.S.N.); (A.Z.)
- Department of Integrative Systems Biology, Institute for Biomedical Sciences, The George Washington University, 2121 I St. NW, Washington, DC 20052, USA
| |
Collapse
|
11
|
Measurement properties and utility of performance-based outcome measures of physical functioning in individuals with facioscapulohumeral dystrophy – A systematic review and evidence synthesis. Neuromuscul Disord 2019; 29:881-894. [DOI: 10.1016/j.nmd.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/25/2019] [Accepted: 09/02/2019] [Indexed: 01/24/2023]
|
12
|
Nuzzo JL, Taylor JL, Gandevia SC. CORP: Measurement of upper and lower limb muscle strength and voluntary activation. J Appl Physiol (1985) 2019; 126:513-543. [DOI: 10.1152/japplphysiol.00569.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Muscle strength, the maximal force-generating capacity of a muscle or group of muscles, is regularly assessed in physiological experiments and clinical trials. An understanding of the expected variation in strength and the factors that contribute to this variation is important when designing experiments, describing methodologies, interpreting results, and attempting to replicate methods of others and reproduce their findings. In this review (Cores of Reproducibility in Physiology), we report on the intra- and inter-rater reliability of tests of upper and lower limb muscle strength and voluntary activation in humans. Isometric, isokinetic, and isoinertial strength exhibit good intra-rater reliability in most samples (correlation coefficients ≥0.90). However, some tests of isoinertial strength exhibit systematic bias that is not resolved by familiarization. With the exception of grip strength, few attempts have been made to examine inter-rater reliability of tests of muscle strength. The acute factors most likely to affect muscle strength and serve as a source of its variation from trial-to-trial or day-to-day include attentional focus, breathing technique, remote muscle contractions, rest periods, temperature (core, muscle), time of day, visual feedback, body and limb posture, body stabilization, acute caffeine consumption, dehydration, pain, fatigue from preceding exercise, and static stretching >60 s. Voluntary activation, the nervous system’s ability to drive a muscle to create its maximal force, exhibits good intra-rater reliability when examined with twitch interpolation (correlation coefficients >0.80). However, inter-rater reliability has not been formally examined. The methodological factors most likely to influence voluntary activation are myograph compliance and sensitivity; stimulation location, intensity, and inadvertent stimulation of antagonists; joint angle (muscle length); and the resting twitch.
Collapse
Affiliation(s)
- James L. Nuzzo
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Janet L. Taylor
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Jacques MF, Onambele‐Pearson GL, Reeves ND, Stebbings GK, Smith J, Morse CI. Relationships between muscle size, strength, and physical activity in adults with muscular dystrophy. J Cachexia Sarcopenia Muscle 2018; 9:1042-1052. [PMID: 30338901 PMCID: PMC6240748 DOI: 10.1002/jcsm.12347] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/30/2018] [Accepted: 08/19/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Muscular dystrophy (MD) is characterized by progressive muscle wasting and weakness, yet few comparisons to non-MD controls (CTRL) of muscle strength and size in this adult population exist. Physical activity (PA) is promoted to maintain health and muscle strength within MD; however, PA reporting in adults with MD is limited to recall data, and its impact on muscle strength is seldom explored. METHODS This study included 76 participants: 16 non-MD (CTRL, mean age 35.4), 15 Duchenne MD (DMD, mean age 24.2), 18 Becker's MD (BMD, mean age 42.4), 13 limb-girdle MD (LGMD, mean age 43.1), and 14 facioscapulohumeral MD (mean age 47.7). Body fat (%) and lean body mass (LBM) were measured using bioelectrical-impedance. Gastrocnemius medialis (GM) anatomical cross-sectional area (ACSA) was determined using B-mode ultrasound. Isometric maximal voluntary contraction (MVC) was assessed during plantar flexion (PFMVC) and knee extension (KEMVC). PA was measured for seven continuous days using triaxial accelerometry and was expressed as daily average minutes being physically active (TPAmins ) or average daily percentage of waking hours being sedentary (sedentary behaviour). Additionally, 10 m walk time was assessed. RESULTS Muscular dystrophy groups had 34-46% higher body fat (%) than CTRL. DMD showed differences in LBM with 21-28% less LBM than all other groups. PFMVC and KEMVC were 36-75% and 24-92% lower, respectively, in MD groups than CTRL. GM ACSA was 47% and 39% larger in BMD and LGMD, respectively, compared with CTRL. PFMVC was associated with GM ACSA in DMD (P = 0.026, R = 0.429) and CTRL (P = 0.015, R = 0.553). MD groups were 14-38% more sedentary than CTRL groups, while DMD were more sedentary than BMD (14%), LGMD (8%), and facioscapulohumeral MD (14%). Sedentary behaviour was associated with LBM in DMD participants (P = 0.021, R = -0.446). TPAmins was associated with KEMVC (P = 0.020, R = 0.540) in BMD participants, while TPAmins was also the best predictor of 10 m walk time (P < 0.001, R2 = 0.540) in ambulant MD, revealed by multiple linear regression. CONCLUSIONS Quantified muscle weakness and impaired 10 m walking time is reported in adults with MD. Muscle weakness and 10 m walk time were associated with lower levels of TPA in adults with MD. Higher levels of sedentary behaviour were associated with reduced LBM in DMD. These findings suggest a need for investigations into patterns of PA behaviour, and relevant interventions to reduce sedentary behaviour and encourage PA in adults with MD regardless of impairment severity.
Collapse
Affiliation(s)
- Matthew F. Jacques
- Research Centre for Musculoskeletal Science and Sports Medicine, School of Healthcare Science, Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Gladys L. Onambele‐Pearson
- Research Centre for Musculoskeletal Science and Sports Medicine, School of Healthcare Science, Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Neil D. Reeves
- Research Centre for Musculoskeletal Science and Sports Medicine, School of Healthcare Science, Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | - Georgina K. Stebbings
- Research Centre for Musculoskeletal Science and Sports Medicine, School of Healthcare Science, Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| | | | - Christopher I. Morse
- Research Centre for Musculoskeletal Science and Sports Medicine, School of Healthcare Science, Faculty of Science and EngineeringManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
14
|
Gruet M. Fatigue in Chronic Respiratory Diseases: Theoretical Framework and Implications For Real-Life Performance and Rehabilitation. Front Physiol 2018; 9:1285. [PMID: 30283347 PMCID: PMC6156387 DOI: 10.3389/fphys.2018.01285] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022] Open
Abstract
Fatigue is a primary disabling symptom in chronic respiratory diseases (CRD) with major clinical implications. However, fatigue is not yet sufficiently explored and is still poorly understood in CRD, making this symptom underdiagnosed and undertreated in these populations. Fatigue is a dynamic phenomenon, particularly in such evolving diseases punctuated by acute events which can, alone or in combination, modulate the degree of fatigue experienced by the patients. This review supports a comprehensive inter-disciplinary approach of CRD-related fatigue and emphasizes the need to consider both its performance and perceived components. Most studies in CRD evaluated perceived fatigue as a trait characteristic using multidimensional scales, providing precious information about its prevalence and clinical impact. However, these scales are not adapted to understand the complex dynamics of fatigue in real-life settings and should be augmented with ecological assessment of fatigue. The state level of fatigue must also be considered during physical tasks as severe fatigue can emerge rapidly during exercise. CRD patients exhibit alterations in both peripheral and central nervous systems and these abnormalities can be exacerbated during exercise. Laboratory tests are necessary to provide mechanistic insights into how and why fatigue develops during exercise in CRD. A better knowledge of the neurophysiological mechanisms underlying perceived and performance fatigability and their influence on real-life performance will enable the development of new individualized countermeasures. This review aims first to shed light on the terminology of fatigue and then critically considers the contemporary models of fatigue and their relevance in the particular context of CRD. This article then briefly reports the prevalence and clinical consequences of fatigue in CRD and discusses the strengths and weaknesses of various fatigue scales. This review also provides several arguments to select the ideal test of performance fatigability in CRD and to translate the mechanistic laboratory findings into the clinical practice and real-world performance. Finally, this article discusses the dose-response relationship to training and the feasibility and validity of using the fatigue produced during exercise training sessions in CRD to optimize exercise training efficiency. Methodological concerns, examples of applications in selected diseases and avenues for future research are also provided.
Collapse
|
15
|
Beveridge LA, Price RJG, Burton LA, Witham MD, Struthers AD, Sumukadas D. Acceptability and feasibility of magnetic femoral nerve stimulation in older, functionally impaired patients. BMC Res Notes 2018; 11:394. [PMID: 29907125 PMCID: PMC6003158 DOI: 10.1186/s13104-018-3493-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/06/2018] [Indexed: 11/22/2022] Open
Abstract
Objective Magnetic femoral nerve stimulation to test muscle function has been largely unexplored in older people. We assessed acceptability, feasibility, along with reproducibility and correlation with other physical function measures. Results Study 1 recruited older people with sarcopenia. Stimulation was performed at baseline and 2 weeks along with six minute walk (6MW), maximum voluntary quadriceps contraction, short physical performance battery and grip strength. Acceptability was measured using visual analog scales. Study 2 used baseline data from a trial of older people. We correlated stimulation results with 6MW, maximal voluntary contraction and muscle mass. Maximum quadriceps twitch tension was measured in both studies, evoked using biphasic magnetic stimulation of the femoral nerve. In study 1 (n = 12), magnetic stimulation was well tolerated with mean discomfort rating of 9% (range 0–40%) on a visual analog scale. Reproducibility was poor (intraclass correlation coefficient 0.06; p = 0.44). Study 2 (n = 64) showed only weak to moderate correlations for maximum quadriceps twitch tension with other measures of physical function (6 minute walk test r = 0.24, p = 0.06; maximal voluntary contraction r = 0.26; p = 0.04). We conclude that magnetic femoral nerve stimulation is acceptable and feasible but poorly reproducible in older, functionally impaired people.
Collapse
Affiliation(s)
- Louise A Beveridge
- Department of Medicine for the Elderly, NHS Tayside, Dundee, Scotland, UK. .,Medicine for the Elderly, Perth Royal Infirmary, Perth, PH1 1NX, Scotland, UK.
| | - Rosemary J G Price
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, Scotland, UK
| | - Louise A Burton
- Department of Medicine for the Elderly, NHS Tayside, Dundee, Scotland, UK
| | - Miles D Witham
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, Scotland, UK
| | - Allan D Struthers
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, Scotland, UK
| | - Deepa Sumukadas
- Division of Molecular and Clinical Medicine, Ninewells Hospital, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
16
|
Marra MA, Heskamp L, Mul K, Lassche S, van Engelen BGM, Heerschap A, Verdonschot N. Specific muscle strength is reduced in facioscapulohumeral dystrophy: An MRI based musculoskeletal analysis. Neuromuscul Disord 2017; 28:238-245. [PMID: 29395674 DOI: 10.1016/j.nmd.2017.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/28/2017] [Accepted: 11/26/2017] [Indexed: 02/03/2023]
Abstract
The aim was to test whether strength per unit of muscle area (specific muscle strength) is affected in facioscapulohumeral dystrophy (FSHD) patients, as compared to healthy controls. Ten patients and ten healthy volunteers underwent an MRI examination and maximum voluntary isometric contraction measurements (MVICs) of the quadriceps muscles. Contractile muscle volume, as obtained from the MR images, was combined with the MVICs to calculate the physiological cross-sectional area (PCSA) and muscle strength using a musculoskeletal model. Subsequently, specific strength was calculated for each subject as muscle strength divided by total PCSA. FSHD patients had a reduced quadriceps muscle strength (median(1st quartile-3rd quartile): 2011 (905.4-2775) N vs. 5510 (4727-8321) N, p <0.001) and total PCSA (83.6 (62.3-124.8) cm2vs. 140.1(97.1-189.9) cm2, p = 0.015) compared to healthy controls. Furthermore, the specific strength of the quadriceps was significantly lower in patients compared to healthy controls (20.9 (14.7-24.0) N/cm2vs. 41.9 (38.3-49.0) N/cm2, p <0.001). Thus, even when correcting for atrophy and fatty infiltration, patients with FSHD generated less force per unit area of residual muscle tissue than healthy controls. Possible explanations include impaired force propagation due to fatty infiltration, reduced intrinsic force-generating capacity of the muscle fibers, or mitochondrial abnormalities leading to impaired energy metabolism.
Collapse
Affiliation(s)
- Marco A Marra
- Orthopaedic Research Laboratory, Radboud Institute for Health Sciences, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Linda Heskamp
- Department of Radiology and Nuclear Medicine, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Saskia Lassche
- Department of Neurology, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nico Verdonschot
- Orthopaedic Research Laboratory, Radboud Institute for Health Sciences, Radboud university medical center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Biomechanical Engineering, University of Twente, Postbus 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
17
|
Reproductibilité de la mesure de la force et de l’endurance du quadriceps dans la BPCO. Rev Mal Respir 2017; 34:1000-1006. [DOI: 10.1016/j.rmr.2016.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 11/13/2016] [Indexed: 12/23/2022]
|
18
|
Bankolé LC, Millet GY, Temesi J, Bachasson D, Ravelojaona M, Wuyam B, Verges S, Ponsot E, Antoine JC, Kadi F, Féasson L. Safety and efficacy of a 6-month home-based exercise program in patients with facioscapulohumeral muscular dystrophy: A randomized controlled trial. Medicine (Baltimore) 2016; 95:e4497. [PMID: 27495097 PMCID: PMC4979851 DOI: 10.1097/md.0000000000004497] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Previous randomized controlled trials investigating exercise training programs in facioscapulohumeral muscular dystrophy (FSHD) patients are scarce and of short duration only. This study assessed the safety and efficacy of a 6-month home-based exercise training program on fitness, muscle, and motor function in FSHD patients. METHODS Sixteen FSHD patients were randomly assigned to training (TG) and control (CG) groups (both n = 8) in a home-based exercise intervention. Training consisted of cycling 3 times weekly for 35 minutes (combination of strength, high-intensity interval, and low-intensity aerobic) at home for 24 weeks. Patients in CG also performed an identical training program (CTG) after 24 weeks. The primary outcome was change in peak oxygen uptake (VO2 peak) measured every 6 weeks. The principal secondary outcomes were maximal quadriceps strength (MVC) and local quadriceps endurance every 12 weeks. Other outcome measures included maximal aerobic power (MAP) and experienced fatigue every 6 weeks, 6-minute walking distance every 12 weeks, and muscle characteristics from vastus lateralis biopsies taken pre- and postintervention. RESULTS The compliance rate was 91% in TG. Significant improvements with training were observed in the VO2 peak (+19%, P = 0.002) and MAP by week 6 and further to week 24. Muscle endurance, MVC, and 6-minute walking distance increased and experienced fatigue decreased. Muscle fiber cross-sectional area and citrate synthase activity increased by 34% (P = 0.008) and 46% (P = 0.003), respectively. Dystrophic pathophysiologic patterns were not exacerbated. Similar improvements were experienced by TG and CTG. CONCLUSIONS A combined strength and interval cycling exercise-training program compatible with patients' daily professional and social activities leads to significant functional benefits without compromising muscle tissue.
Collapse
Affiliation(s)
- Landry-Cyrille Bankolé
- Laboratoire Interuniversitaire de Biologie de la Motricité, UJM-Saint-Etienne, Université de Lyon, Saint-Etienne, France
- Unité de Myologie, Centre Hospitalier, Universitaire de Saint-Etienne, Saint-Etienne, France
- Division of Sport Sciences, School of Health and Medical Sciences, Orebro University, Orebro, Sweden
- Centre Référent Maladies Neuromusculaires Rares Rhône-Alpes, Saint-Etienne, France
| | - Guillaume Y. Millet
- Laboratoire Interuniversitaire de Biologie de la Motricité, UJM-Saint-Etienne, Université de Lyon, Saint-Etienne, France
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- U1042, INSERM, Grenoble, France
| | - John Temesi
- Laboratoire Interuniversitaire de Biologie de la Motricité, UJM-Saint-Etienne, Université de Lyon, Saint-Etienne, France
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Damien Bachasson
- U1042, INSERM, Grenoble, France
- Laboratoire HP2, Grenoble Alpes University, Grenoble, France
| | - Marion Ravelojaona
- Laboratoire Interuniversitaire de Biologie de la Motricité, UJM-Saint-Etienne, Université de Lyon, Saint-Etienne, France
- Unité de Myologie, Centre Hospitalier, Universitaire de Saint-Etienne, Saint-Etienne, France
- Centre Référent Maladies Neuromusculaires Rares Rhône-Alpes, Saint-Etienne, France
| | - Bernard Wuyam
- U1042, INSERM, Grenoble, France
- Laboratoire HP2, Grenoble Alpes University, Grenoble, France
- Centre Référent Maladies Neuromusculaires Rares Rhône-Alpes, Saint-Etienne, France
| | - Samuel Verges
- U1042, INSERM, Grenoble, France
- Laboratoire HP2, Grenoble Alpes University, Grenoble, France
| | - Elodie Ponsot
- Division of Sport Sciences, School of Health and Medical Sciences, Orebro University, Orebro, Sweden
| | | | - Fawzi Kadi
- Division of Sport Sciences, School of Health and Medical Sciences, Orebro University, Orebro, Sweden
| | - Léonard Féasson
- Laboratoire Interuniversitaire de Biologie de la Motricité, UJM-Saint-Etienne, Université de Lyon, Saint-Etienne, France
- Unité de Myologie, Centre Hospitalier, Universitaire de Saint-Etienne, Saint-Etienne, France
- Centre Référent Maladies Neuromusculaires Rares Rhône-Alpes, Saint-Etienne, France
- Correspondence: Léonard Féasson, Unité de Myologie, Campus Santé Innovations, CHU de St Etienne, Cedex 2, 42055 France (e-mail: )
| |
Collapse
|
19
|
Barreiro E, Gea J. Molecular and biological pathways of skeletal muscle dysfunction in chronic obstructive pulmonary disease. Chron Respir Dis 2016; 13:297-311. [PMID: 27056059 DOI: 10.1177/1479972316642366] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) will be a major leading cause of death worldwide in the near future. Weakness and atrophy of the quadriceps are associated with a significantly poorer prognosis and increased mortality in COPD. Despite that skeletal muscle dysfunction may affect both respiratory and limb muscle groups in COPD, the latter are frequently more severely affected. Therefore, muscle dysfunction in COPD is a common systemic manifestation that should be evaluated on routine basis in clinical settings. In the present review, several aspects of COPD muscle dysfunction are being reviewed, with special emphasis on the underlying biological mechanisms. Figures on the prevalence of COPD muscle dysfunction and the most relevant etiologic contributors are also provided. Despite that ongoing research will shed light into the contribution of additional mechanisms to COPD muscle dysfunction, current knowledge points toward the involvement of a wide spectrum of cellular and molecular events that are differentially expressed in respiratory and limb muscles. Such mechanisms are thoroughly described in the article. The contribution of epigenetic events on COPD muscle dysfunction is also reviewed. We conclude that in view of the latest discoveries, from now, on new avenues of research should be designed to specifically target cellular mechanisms and pathways that impair muscle mass and function in COPD using pharmacological strategies and/or exercise training modalities.
Collapse
Affiliation(s)
- Esther Barreiro
- Department of Respiratory Medicine, Muscle and Respiratory System Research Unit (URMAR), Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Barcelona, Spain Department of Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| | - Joaquim Gea
- Department of Respiratory Medicine, Muscle and Respiratory System Research Unit (URMAR), Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Barcelona, Spain Department of Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
20
|
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126:1071-1107. [PMID: 25797650 PMCID: PMC6350257 DOI: 10.1016/j.clinph.2015.02.001] [Citation(s) in RCA: 1935] [Impact Index Per Article: 193.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
Abstract
These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
Collapse
Affiliation(s)
- P M Rossini
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - D Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - R Chen
- Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Z Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - R Di Iorio
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy.
| | - V Di Lazzaro
- Department of Neurology, University Campus Bio-medico, Rome, Italy
| | - F Ferreri
- Department of Neurology, University Campus Bio-medico, Rome, Italy; Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| | - M S George
- Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - M Hallett
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - B Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - H Matsumoto
- Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - C Miniussi
- Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy; IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M A Nitsche
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - A Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - S Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - J C Rothwell
- Institute of Neurology, University College London, London, United Kingdom
| | - H R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Y Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - V Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
21
|
Rijken NHM, van Engelen BGM, de Rooy JWJ, Geurts ACH, Weerdesteyn V. Trunk muscle involvement is most critical for the loss of balance control in patients with facioscapulohumeral muscular dystrophy. Clin Biomech (Bristol, Avon) 2014; 29:855-60. [PMID: 25156185 DOI: 10.1016/j.clinbiomech.2014.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 07/25/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although it is known that muscle weakness is a major cause of postural instability and leads to an increased incidence of falls in patients with neuromuscular disease, the relative contribution of lower extremity and trunk muscle weakness to postural instability has not been studied well. METHODS We determined the relationship between muscle fatty infiltration and sagittal-plane balance in ten patients with facioscapulohumeral muscular dystrophy. Sagittal-plane platform translations were imposed in forward and backward directions on patients with facioscapulohumeral muscular dystrophy and healthy controls. Stepping thresholds were determined and kinematic responses and center-of-mass displacements were assessed using 3 dimensional motion analysis. In the patients, magnetic resonance imaging was used to determine the amount of fatty infiltration of trunk and lower extremity muscles. FINDINGS Stepping thresholds in both directions were decreased in patients compared to controls. In patients, significant correlations were found for fatty infiltration of ventral muscles with backward stepping threshold and for fatty infiltration of dorsal muscles with forward stepping threshold. Fatty infiltration of the rectus abdominis and the back extensors explained the largest part of the variance in backward and forward stepping thresholds, respectively. Center-of-mass displacements were dependent on intensity and direction of perturbation. Kinematic analysis revealed predominant ankle strategies, except in patients with lumbar hyperlordosis. INTERPRETATION These findings indicate that trunk muscle involvement is most critical for loss of sagittal-plane postural balance in patients with facioscapulohumeral muscular dystrophy. This insight may help to develop rehabilitation strategies to prevent these patients from falling.
Collapse
Affiliation(s)
- N H M Rijken
- Department of Rehabilitation, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - B G M van Engelen
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J W J de Rooy
- Department of Radiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - A C H Geurts
- Department of Rehabilitation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - V Weerdesteyn
- Department of Rehabilitation, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|