1
|
Van Hoornweder S, Mora DAB, Nuyts M, Cuypers K, Verstraelen S, Meesen R. The causal role of beta band desynchronization: Individualized high-definition transcranial alternating current stimulation improves bimanual motor control. Neuroimage 2025; 312:121222. [PMID: 40250642 DOI: 10.1016/j.neuroimage.2025.121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
OBJECTIVE To unveil if 3 mA peak-to-peak high-definition β transcranial alternating current stimulation (tACS) applied over C4 -the area overlaying the right sensorimotor cortex-enhances bimanual motor control and affects movement-related β desynchronization (MRβD), thereby providing causal evidence for the polymorphic role of MRβD in motor control. METHODS In this sham-controlled, crossover study, 36 participants underwent 20 min of fixed 20 Hz tACS; tACS individualized to peak β activity during motor planning at baseline; and sham tACS randomized over three consecutive days. Each participant underwent all three conditions for a total of 108 sessions, ensuring within-subject comparisons. Before, during, and after tACS, participants performed a bimanual tracking task (BTT) and 64-channel electroencephalography (EEG) data was measured. Spatiotemporal and temporal clustering statistics with underlying linear mixed effect models were used to test our hypotheses. RESULTS Individualized tACS significantly improved bimanual motor control, both online and offline, and increased online MRβD during motor planning compared to fixed tACS. No offline effects of fixed and individualized tACS on MRβD were found compared to sham, although tACS effects did trend towards the hypothesized MRβD increase. Throughout the course of the study, MRβD and bimanual motor performance increased. Exclusively during motor planning, MRβD was positively associated to bimanual motor performance improvements, emphasizing the functionally polymorphic role of MRβD. tACS was well tolerated and no side-effects occurred. CONCLUSION Individualized β-tACS improves bimanual motor control and enhances motor planning MRβD online. These findings provide causal evidence for the importance of MRβD when planning complex motor behavior.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | | | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Koen Cuypers
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, 3001 Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| |
Collapse
|
2
|
Cheng CH, Chan PYS, Chen SY, Chen YH, Lu H, Liu CY. Trait anxiety negatively modulates the coupling of motor event-related desynchronization and event-related synchronization. BMC Psychiatry 2025; 25:447. [PMID: 40312350 PMCID: PMC12046696 DOI: 10.1186/s12888-025-06901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/23/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Recent neurophysiological studies showed that patients with psychiatric disorders demonstrated abnormalities in sensorimotor functions in addition to cognitive deficits. These findings intrigued us to investigate whether trait anxiety, a persistent inclination towards being anxious in multiple contexts, would affect motor cortical functions. Event-related desynchronization (ERD) and event-related synchronization (ERS) of α and β oscillations are associated with movement execution and movement termination, respectively. However, no study has comprehensively examined the effects of trait anxiety on motor ERD and ERS. Therefore, this study aimed to determine how trait anxiety influences these motor cortical oscillations. METHODS Twenty subjects (top 10% of the trait anxiety score distribution from 400 college students) with higher trait anxiety (HTA) and 20 subjects (bottom 10% of trait anxiety score distribution from the same sample) with lower trait anxiety (LTA) were recruited to perform a Go-Nogo task during electroencephalographic recordings. ERD and ERS of α and β oscillations to Go responses were compared between these two groups. The associations between ERD and ERS in each group were also examined. RESULTS Neither ERD nor ERS power changes were significantly different between LTA and HTA groups. Interestingly, a significant correlation between β ERD and α ERS/β ERS was found in the individuals with LTA; however, such functional coupling was not present in the individuals with HTA. CONCLUSION Trait anxiety negatively modulates the coupling of motor ERD and ERS.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Rd, Taoyuan City , 333, Taiwan.
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Neurology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Pei-Ying S Chan
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Rd, Taoyuan City , 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Si-Yu Chen
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Rd, Taoyuan City , 333, Taiwan
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Yu-Han Chen
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Rd, Taoyuan City , 333, Taiwan
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Hsinjie Lu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Rd, Taoyuan City , 333, Taiwan
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Bista S, Coffey A, Mitchell M, Fasano A, Dukic S, Buxo T, Giglia E, Heverin M, Muthuraman M, Carson RG, Lowery M, Manus LM, Hardiman O, Nasseroleslami B. Abnormal EEG spectral power and coherence measures during pre-motor stage in Amyotrophic Lateral Sclerosis. IEEE Trans Neural Syst Rehabil Eng 2024; PP:232-242. [PMID: 40030616 DOI: 10.1109/tnsre.2024.3523109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multisystem neurodegenerative disorder characterized by progressive motor decline. Studies of electroencephalographic (EEG) activity during rest and motor execution have captured network changes in ALS. However, the nature of network-level impairment in the pre-motor activity in ALS remains unclear. Assessing the (dys)function of motor networks engaged prior to motor output is essential for understanding the motor pathophysiology in ALS. We recorded EEG in 22 people with ALS (PwALS) and 16 age-matched healthy controls during rest and isometric pincer-grip tasks. EEG spectral power and coherence were calculated during rest, pre-motor stage, and motor execution. In PwALS, significantly higher event-related spectral perturbations were observed compared to controls over electrodes representing a) contralateral prefrontal and parietal regions in theta band during pre-motor stage, b) contralateral parietal and ipsilateral motor regions in high-beta band during motor execution. Similarly, spectral coherence revealed abnormal EEG connectivity within 1) sensorimotor network during rest in theta band, 2) (pre)motor networks during pre-motor stage in low-alpha and high-beta bands, 3) Fronto-parietal networks during execution in high-beta band. Furthermore, the abnormal EEG connectivity during rest and execution (but not during pre-motor stage) showed significant negative correlation with clinical ALS-functional-rating-scale scores. Combining abnormal EEG connectivity from rest, pre-motor, and execution stages provided more powerful discrimination between patients and controls with a uniquely higher contribution of measures pertaining to the pre-motor stage. The results indicate that pre-motor functional activity reflects a different and unique aspect of network impairment, with potential for inclusion as biomarker candidates in ALS.
Collapse
|
4
|
Lorenc F, Dupuis L, Cassel R. Impairments of inhibitory neurons in amyotrophic lateral sclerosis and frontotemporal dementia. Neurobiol Dis 2024; 203:106748. [PMID: 39592063 DOI: 10.1016/j.nbd.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two fatal neurodegenerative disorders. They are part of a pathophysiological continuum, displaying clinical, neuropathological, and genetic overlaps. There is compelling evidence that neuronal circuit dysfunction is an early feature of both diseases. Impaired neuronal excitability, imbalanced excitatory and inhibitory influences, and altered functional connectivity have been reported. These phenomena are likely due to combined alterations in the various cellular components involved in the functioning of neuronal networks. This review focuses on one of these cellular components: inhibitory neurons. We assess the evidence for inhibitory neuron impairments in amyotrophic lateral sclerosis and frontotemporal dementia, as well as the mechanisms leading to the loss of inhibition. We also discuss the contributions of these alterations to symptoms, and the potential therapeutic strategies for targeting inhibitory neuron deficits.
Collapse
Affiliation(s)
- Félicie Lorenc
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| | - Luc Dupuis
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| | - Raphaelle Cassel
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| |
Collapse
|
5
|
Theme 8 Clinical Imaging and Electrophysiology. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:218-231. [PMID: 39508669 DOI: 10.1080/21678421.2024.2403305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
6
|
Marques LM, Castellani A, Barbosa SP, Imamura M, Battistella LR, Simis M, Fregni F. Neuroplasticity changes in knee osteoarthritis (KOA) indexed by event-related desynchronization/synchronization during a motor inhibition task. Somatosens Mot Res 2024; 41:149-158. [PMID: 36921090 DOI: 10.1080/08990220.2023.2188926] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
PURPOSE Event-related desynchronisation (ERD) and event-related synchronisation (ERS) reflect pain perception and integration of the nociceptive sensory inputs. This may contribute to the understanding of how neurophysiological markers of Knee Osteoarthritis (KOA) patients can differ from control individuals, which would improve aspects such as prediction and prognosis. We performed a cross-sectional analysis of our cohort study (DEFINE cohort), KOA arm, with 71 patients, compared with 65 control participants. The study aimed to examine possible differences between ERD and ERS in control participants compared to Knee Osteoarthritis (KOA) patients when adjusting for important covariates. MATERIALS AND METHODS We performed independent multivariate regression models considering as dependent variables the power value related to ERD and ERS for four different sensorimotor tasks (Motor Execution, Motor Imagery, Active Observation and Passive Observation) and four sensorimotor oscillations (Alpha, Beta, Low Beta, and High Beta), each model, controlled by age and sex. RESULTS We demonstrate that the differences between KOA and healthy subjects are frequency specific, as most differences are in the beta bandwidth range. Also, we observed that subjects in the KOA group had significantly higher ERD and ERS. This may be correlated to the amount of lack of brain organisation and a subsequent attempt at compensation induced by KOA. CONCLUSIONS Our findings strengthen the notion that subjects with KOA have a higher degree of brain plasticity changes that are also likely correlated to the degree of compensation and behavioural dysfunction.
Collapse
Affiliation(s)
- Lucas M Marques
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Ana Castellani
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Sara P Barbosa
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Marta Imamura
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Linamara R Battistella
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marcel Simis
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Ward TW, Springer SD, Schantell M, John JA, Horne LK, Coutant AT, Okelberry HJ, Willett MP, Johnson HJ, Killanin AD, Heinrichs‐Graham E, Wilson TW. Regular cannabis use alters the neural dynamics serving complex motor control. Hum Brain Mapp 2023; 44:6511-6522. [PMID: 37955378 PMCID: PMC10681654 DOI: 10.1002/hbm.26527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/01/2023] [Accepted: 10/08/2023] [Indexed: 11/14/2023] Open
Abstract
Cannabis is the most widely used recreational drug in the United States and regular use has been linked to deficits in attention and memory. However, the effects of regular use on motor control are less understood, with some studies showing deficits and others indicating normal performance. Eighteen users and 23 nonusers performed a motor sequencing task during high-density magnetoencephalography (MEG). The MEG data was transformed into the time-frequency domain and beta responses (16-24 Hz) during motor planning and execution phases were imaged separately using a beamformer approach. Whole-brain maps were examined for group (cannabis user/nonuser) and time window (planning/execution) effects. As expected, there were no group differences in task performance (e.g., reaction time, accuracy, etc.). Regular cannabis users exhibited stronger beta oscillations in the contralateral primary motor cortex compared to nonusers during the execution phase of the motor sequences, but not during the motor planning phase. Similar group-by-time window interactions were observed in the left superior parietal, right inferior frontal cortices, right posterior insular cortex, and the bilateral motor cortex. We observed differences in the neural dynamics serving motor control in regular cannabis users compared to nonusers, suggesting regular users may employ compensatory processing in both primary motor and higher-order motor cortices to maintain adequate task performance. Future studies will need to examine more complex motor control tasks to ascertain whether this putative compensatory activity eventually becomes exhausted and behavioral differences emerge.
Collapse
Affiliation(s)
- Thomas W. Ward
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Mikki Schantell
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lucy K. Horne
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Anna T. Coutant
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Madelyn P. Willett
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hallie J. Johnson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Elizabeth Heinrichs‐Graham
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
8
|
Chiarenza GA. The psychophysiology of "covert" goal-directed behavior. PROGRESS IN BRAIN RESEARCH 2023; 280:17-42. [PMID: 37714571 DOI: 10.1016/bs.pbr.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Covert behavior is defined as behavior that is not directly visible and is thus comparable to a type of behavioral silence that requires modern psychophysiological techniques to reveal. Goal-directed behavior is teleologically purposive. Fundamentally, there are two approaches to accounting for purposeful behavior. One is the cybernetic approach, which views behavior as homeostatic and largely reflexive. The other one views behavior as a cognitive process that involves an interaction between neural events representing the previous experience, the present state of the individual, and the occurrence of particular features in the environment. This review, based on published data, presents a non-invasive psychophysiological method for investigating the electrical brain activity associated with those "silent" behaviors such as intention, evaluation of results, and memorization. Movement-related potentials (MRPs) are ideal for studying these processes. The MRPs are recorded during the execution of the skilled performance task (SPT). This task requires the execution of fast ballistic movements with the thumbs of both hands, learning a precise and short time interval between the two thumb presses, and scoring the highest number of target performances. The subject receives real-time feedback about the results of his performance. The MRPs associated with this task and present during covert behavior are the Bereitschaftspotential (BP) present before the onset of movement and the Skilled Performance Positivity (SPP) after movement, which coincides with the subject's awareness of the success or failure of his performance. These potentials show a maturational trend, reaching the adult form around the age of 10 when formal and abstract thinking progress. SPT and MRPs are particularly suitable to study neurodevelopmental disorders. Children with developmental dyslexia show abnormal MRPs, both in latency and amplitude, in different brain areas.
Collapse
|
9
|
Peter J, Ferraioli F, Mathew D, George S, Chan C, Alalade T, Salcedo SA, Saed S, Tatti E, Quartarone A, Ghilardi MF. Movement-related beta ERD and ERS abnormalities in neuropsychiatric disorders. Front Neurosci 2022; 16:1045715. [PMID: 36507340 PMCID: PMC9726921 DOI: 10.3389/fnins.2022.1045715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Movement-related oscillations in the beta range (from 13 to 30 Hz) have been observed over sensorimotor areas with power decrease (i.e., event-related desynchronization, ERD) during motor planning and execution followed by an increase (i.e., event-related synchronization, ERS) after the movement's end. These phenomena occur during active, passive, imaged, and observed movements. Several electrophysiology studies have used beta ERD and ERS as functional indices of sensorimotor integrity, primarily in diseases affecting the motor system. Recent literature also highlights other characteristics of beta ERD and ERS, implying their role in processes not strictly related to motor function. Here we review studies about movement-related ERD and ERS in diseases characterized by motor dysfunction, including Parkinson's disease, dystonia, stroke, amyotrophic lateral sclerosis, cerebral palsy, and multiple sclerosis. We also review changes of beta ERD and ERS reported in physiological aging, Alzheimer's disease, and schizophrenia, three conditions without overt motor symptoms. The review of these works shows that ERD and ERS abnormalities are present across the spectrum of the examined pathologies as well as development and aging. They further suggest that cognition and movement are tightly related processes that may share common mechanisms regulated by beta modulation. Future studies with a multimodal approach are warranted to understand not only the specific topographical dynamics of movement-related beta modulation but also the general meaning of beta frequency changes occurring in relation to movement and cognitive processes at large. Such an approach will provide the foundation to devise and implement novel therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaime Peter
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Francesca Ferraioli
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Dave Mathew
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shaina George
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Cameron Chan
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Tomisin Alalade
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Sheilla A. Salcedo
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shannon Saed
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Elisa Tatti
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,*Correspondence: Elisa Tatti,
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo-Piemonte, Messina, Italy,Angelo Quartarone,
| | - M. Felice Ghilardi
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,M. Felice Ghilardi,
| |
Collapse
|
10
|
Borras M, Romero S, Alonso JF, Bachiller A, Serna LY, Migliorelli C, Mananas MA. Influence of the number of trials on evoked motor cortical activity in EEG recordings. J Neural Eng 2022; 19. [PMID: 35926471 DOI: 10.1088/1741-2552/ac86f5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Improvements in electroencephalography enable the study of the localization of active brain regions during motor tasks. Movement-related cortical potentials (MRCPs), and event-related desynchronization (ERD) and synchronization (ERS) are the main motor-related cortical phenomena/neural correlates observed when a movement is elicited. When assessing neurological diseases, averaging techniques are commonly applied to characterize motor related processes better. In this case, a large number of trials is required to obtain a motor potential that is representative enough of the subject's condition. This study aimed to assess the effect of a limited number of trials on motor-related activity corresponding to different upper limb movements (elbow flexion/extension, pronation/supination and hand open/close). APPROACH An open dataset consisting on 15 healthy subjects was used for the analysis. A Monte Carlo simulation approach was applied to analyse, in a robust way, different typical time- and frequency-domain features, topography, and low-resolution tomography (LORETA). MAIN RESULTS Grand average potentials, and topographic and tomographic maps showed few differences when using fewer trials, but shifts in the localization of motor-related activity were found for several individuals. MRCP and beta ERD features were more robust to a limited number of trials, yielding differences lower than 20% for cases with 50 trials or more. Strong correlations between features were obtained for subsets above 50 trials. However, the inter-subject variability increased as the number of trials decreased. The elbow flexion/extension movement showed a more robust performance for a limited number of trials, both in population and in individual-based analysis. SIGNIFICANCE Our findings suggested that 50 trials can be an appropriate number to obtain stable motor-related features in terms of differences in the averaged motor features, correlation, and changes in topography and tomography.
Collapse
Affiliation(s)
- Marta Borras
- Eng. Sistemes. Automàtica i inf. ind., Universitat Politècnica de Catalunya, Campus Diagonal Sud. Edifici U. C. Pau Gargallo, 5. 08028 Barcelona, Barcelona, 08034, SPAIN
| | - Sergio Romero
- Automatic Control Department (ESAII), Universitat Politecnica de Catalunya, Barcelona, Barcelona, Catalunya, 08034, SPAIN
| | - Joan F Alonso
- Universitat Politècnica de Catalunya, Campus Diagonal Sud. Edifici U. C. Pau Gargallo, 5, Barcelona, Catalunya, 08034, SPAIN
| | - Alejandro Bachiller
- Automatic Control Department, Universitat Politècnica de Catalunya, EDIFICI H, AVDA. DIAGONAL, 647, Office 4.26, Barcelona, Catalunya, 08034, SPAIN
| | - Leidy Y Serna
- Eng. Sistemes. Automàtica i inf. ind., Universitat Politècnica de Catalunya, Campus Diagonal Sud. Edifici U. C. Pau Gargallo, 5. 08028 Barcelona, Barcelona, 08034, SPAIN
| | - Carolina Migliorelli
- Unit of Digital Health, Eurecat Centre Tecnològic de Catalunya, Av. Universitat Autònoma, 23 - 08290 Cerdanyola del Vallès (Barcelona), Barcelona, Catalunya, 08290, SPAIN
| | - Miguel A Mananas
- Departamento de Ingeniería de Sistemas, Universitat Politècnica de Catalunya, Campus Diagonal Sud. Edifici U. C. Pau Gargallo, 5., Barcelona, Catalunya, 08034, SPAIN
| |
Collapse
|
11
|
Govaarts R, Beeldman E, Fraschini M, Griffa A, Engels MMA, van Es MA, Veldink JH, van den Berg LH, van der Kooi AJ, Pijnenburg YAL, de Visser M, Stam CJ, Raaphorst J, Hillebrand A. Cortical and subcortical changes in resting-state neuronal activity and connectivity in early symptomatic ALS and advanced frontotemporal dementia. Neuroimage Clin 2022; 34:102965. [PMID: 35217500 PMCID: PMC8867127 DOI: 10.1016/j.nicl.2022.102965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/17/2023]
Abstract
The objective of this study was to examine if patterns of resting-state brain activity and functional connectivity in cortical and subcortical regions in patients with early symptomatic amyotrophic lateral sclerosis (ALS) resemble those of behavioural variant frontotemporal dementia (bvFTD). In a cross-sectional design, eyes-closed resting-state magnetoencephalography (MEG) data of 34 ALS patients, 18 bvFTD patients and 18 age- and gender-matched healthy controls (HCs) were projected to source-space using an atlas-based beamformer. Group differences in peak frequency, band-specific oscillatory activity and functional connectivity (corrected amplitude envelope correlation) in 78 cortical regions and 12 subcortical regions were determined. False discovery rate was used to correct for multiple comparisons. BvFTD patients, as compared to ALS and HCs, showed lower relative beta power in parietal, occipital, temporal and nearly all subcortical regions. Compared to HCs, patients with ALS and patients with bvFTD had a higher delta (0.5-4 Hz) and gamma (30-48 Hz) band resting-state functional connectivity in a high number of overlapping regions in the frontal lobe and in limbic and subcortical regions. Higher delta band connectivity was widespread in the bvFTD patients compared to HCs. ALS showed a more widespread higher gamma band functional connectivity compared to bvFTD. In conclusion, MEG in early symptomatic ALS patients shows resting-state functional connectivity changes in frontal, limbic and subcortical regions that overlap considerably with bvFTD. The findings show the potential of MEG to detect brain changes in early symptomatic phases of ALS and contribute to our understanding of the disease spectrum, with ALS and bvFTD at the two extreme ends.
Collapse
Affiliation(s)
- Rosanne Govaarts
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Emma Beeldman
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matteo Fraschini
- University of Cagliari, Department of Electrical and Electronic Engineering, Cagliari, Italy
| | - Alessandra Griffa
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institute of Bioengineering, Center of Neuroprosthetics, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Marjolein M A Engels
- Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology, Magnetoencephalography Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Michael A van Es
- University Medical Centre Utrecht, Department of Neurology, Brain Centre Rudolf Magnus, Utrecht, the Netherlands
| | - Jan H Veldink
- University Medical Centre Utrecht, Department of Neurology, Brain Centre Rudolf Magnus, Utrecht, the Netherlands
| | - Leonard H van den Berg
- University Medical Centre Utrecht, Department of Neurology, Brain Centre Rudolf Magnus, Utrecht, the Netherlands
| | - Anneke J van der Kooi
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Yolande A L Pijnenburg
- Amsterdam University Medical Centers, Vrije Universiteit, Alzheimer Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marianne de Visser
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology, Magnetoencephalography Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Joost Raaphorst
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Arjan Hillebrand
- Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology, Magnetoencephalography Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
12
|
de Souza RFL, Mendes TMAS, Lima LABDA, Brandão DS, Laplagne DA, de Sousa MBC. Effect of the Menstrual Cycle on Electroencephalogram Alpha and Beta Bands During Motor Imagery and Action Observation. Front Hum Neurosci 2022; 16:878887. [PMID: 35601901 PMCID: PMC9119141 DOI: 10.3389/fnhum.2022.878887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Female sex steroids (FSS) can affect the motor system, modulating motor cortex excitability as well as performance in dexterity and coordination tasks. However, it has not yet been explored whether FSS affects the cognitive components of motor behavior. Mu is a sensorimotor rhythm observed by electroencephalography (EEG) in alpha (8–12 Hz) and beta (15–30 Hz) frequency bands in practices such as motor imagery (MI) and action observation (AO). This rhythm represents a window for studying the activity of neural circuits involved in motor cognition. Herein we investigated whether the alpha-mu and beta-mu power in the sensorimotor region (C3 and C4, hypothesis-driven approach) and the alpha and beta power over frontal, parietal, and occipital regions (data-driven approach) are modulated differently in the menstrual, follicular, and luteal phases of menstrual cycles in right-handed dominant women. To do so, these women underwent MI and AO in the three menstrual cycle phases. The spectral activity of the cortical regions for the alpha and beta bands were compared between phases of the menstrual cycle and a correlation analysis was also performed in relation to estrogen and progesterone levels. For the hypothesis-based approach, beta-mu event-related desynchronization (ERD) was significantly stronger in the C3 channel in the follicular phase than in the menstrual and luteal phases. For the data-driven approach, beta ERD during MI was higher in the follicular phase than in the menstrual and luteal phases in the frontal region. These findings suggest the effect of FSS on executive movement control. No effect of menstrual cycle phases was observed in cortical areas investigated during OA, but alpha and beta bands correlated positively with the follicular phase plasma estradiol level. Thus, the attenuation of alpha and beta bands referring to mirror neuron activities appears to be associated with inhibition of cortical activity when estradiol levels are lower, improving cognitive processing of motor action.
Collapse
Affiliation(s)
- Rafaela Faustino Lacerda de Souza
- Behavioral Endocrinology Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- *Correspondence: Rafaela Faustino Lacerda de Souza,
| | | | | | - Daniel Soares Brandão
- Electroencephalography Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Diego Andrés Laplagne
- Behavioral Neurophysiology, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Bernardete Cordeiro de Sousa
- Behavioral Endocrinology Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Graduate Program in Psychobiology, Federal University of Rio Grande do Norte, Rio Grande do Norte, Brazil
- Maria Bernardete Cordeiro de Sousa,
| |
Collapse
|
13
|
Cortical Hyperexcitability in the Driver’s Seat in ALS. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the degeneration of cortical and spinal motor neurons. With no effective treatment available to date, patients face progressive paralysis and eventually succumb to the disease due to respiratory failure within only a few years. Recent research has revealed the multifaceted nature of the mechanisms and cell types involved in motor neuron degeneration, thereby opening up new therapeutic avenues. Intriguingly, two key features present in both ALS patients and rodent models of the disease are cortical hyperexcitability and hyperconnectivity, the mechanisms of which are still not fully understood. We here recapitulate current findings arguing for cell autonomous and non-cell autonomous mechanisms causing cortical excitation and inhibition imbalance, which is involved in the degeneration of motor neurons in ALS. Moreover, we will highlight recent evidence that strongly indicates a cardinal role for the motor cortex as a main driver and source of the disease, thus arguing for a corticofugal trajectory of the pathology.
Collapse
|
14
|
Dukic S, McMackin R, Costello E, Metzger M, Buxo T, Fasano A, Chipika R, Pinto-Grau M, Schuster C, Hammond M, Heverin M, Coffey A, Broderick M, Iyer PM, Mohr K, Gavin B, McLaughlin R, Pender N, Bede P, Muthuraman M, van den Berg L, Hardiman O, Nasseroleslami B. Resting-state EEG reveals four subphenotypes of amyotrophic lateral sclerosis. Brain 2021; 145:621-631. [PMID: 34791079 PMCID: PMC9014749 DOI: 10.1093/brain/awab322] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 11/14/2022] Open
Abstract
Amyotrophic lateral sclerosis is a devastating disease characterized primarily by motor system degeneration, with clinical evidence of cognitive and behavioural change in up to 50% of cases. Amyotrophic lateral sclerosis is both clinically and biologically heterogeneous. Subgrouping is currently undertaken using clinical parameters, such as site of symptom onset (bulbar or spinal), burden of disease (based on the modified El Escorial Research Criteria) and genomics in those with familial disease. However, with the exception of genomics, these subcategories do not take into account underlying disease pathobiology, and are not fully predictive of disease course or prognosis. Recently, we have shown that resting-state EEG can reliably and quantitatively capture abnormal patterns of motor and cognitive network disruption in amyotrophic lateral sclerosis. These network disruptions have been identified across multiple frequency bands, and using measures of neural activity (spectral power) and connectivity (comodulation of activity by amplitude envelope correlation and synchrony by imaginary coherence) on source-localized brain oscillations from high-density EEG. Using data-driven methods (similarity network fusion and spectral clustering), we have now undertaken a clustering analysis to identify disease subphenotypes and to determine whether different patterns of disruption are predictive of disease outcome. We show that amyotrophic lateral sclerosis patients (n = 95) can be subgrouped into four phenotypes with distinct neurophysiological profiles. These clusters are characterized by varying degrees of disruption in the somatomotor (α-band synchrony), frontotemporal (β-band neural activity and γl-band synchrony) and frontoparietal (γl-band comodulation) networks, which reliably correlate with distinct clinical profiles and different disease trajectories. Using an in-depth stability analysis, we show that these clusters are statistically reproducible and robust, remain stable after reassessment using a follow-up EEG session, and continue to predict the clinical trajectory and disease outcome. Our data demonstrate that novel phenotyping using neuroelectric signal analysis can distinguish disease subtypes based exclusively on different patterns of network disturbances. These patterns may reflect underlying disease neurobiology. The identification of amyotrophic lateral sclerosis subtypes based on profiles of differential impairment in neuronal networks has clear potential in future stratification for clinical trials. Advanced network profiling in amyotrophic lateral sclerosis can also underpin new therapeutic strategies that are based on principles of neurobiology and designed to modulate network disruption.
Collapse
Affiliation(s)
- Stefan Dukic
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland.,Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Roisin McMackin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Emmet Costello
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Marjorie Metzger
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Teresa Buxo
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Antonio Fasano
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Rangariroyashe Chipika
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Marta Pinto-Grau
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Christina Schuster
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Michaela Hammond
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Amina Coffey
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Michael Broderick
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Parameswaran M Iyer
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Kieran Mohr
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Brighid Gavin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Russell McLaughlin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Niall Pender
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Muthuraman Muthuraman
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Johannes-Gutenberg-University Hospital, Mainz, Germany
| | - Leonard van den Berg
- Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, University of Dublin, Ireland.,Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Ireland
| |
Collapse
|
15
|
Fairchild GT, Marini F, Snow JC. Graspability Modulates the Stronger Neural Signature of Motor Preparation for Real Objects vs. Pictures. J Cogn Neurosci 2021; 33:2477-2493. [PMID: 34407193 PMCID: PMC9946154 DOI: 10.1162/jocn_a_01771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The cognitive and neural bases of visual perception are typically studied using pictures rather than real-world stimuli. Unlike pictures, real objects are actionable solids that can be manipulated with the hands. Recent evidence from human brain imaging suggests that neural responses to real objects differ from responses to pictures; however, little is known about the neural mechanisms that drive these differences. Here, we tested whether brain responses to real objects versus pictures are differentially modulated by the "in-the-moment" graspability of the stimulus. In human dorsal cortex, electroencephalographic responses show a "real object advantage" in the strength and duration of mu (μ) and low beta (β) rhythm desynchronization-well-known neural signatures of visuomotor action planning. We compared desynchronization for real tools versus closely matched pictures of the same objects, when the stimuli were positioned unoccluded versus behind a large transparent barrier that prevented immediate access to the stimuli. We found that, without the barrier in place, real objects elicited stronger μ and β desynchronization compared to pictures, both during stimulus presentation and after stimulus offset, replicating previous findings. Critically, however, with the barrier in place, this real object advantage was attenuated during the period of stimulus presentation, whereas the amplification in later periods remained. These results suggest that the "real object advantage" is driven initially by immediate actionability, whereas later differences perhaps reflect other, more inherent properties of real objects. The findings showcase how the use of richer multidimensional stimuli can provide a more complete and ecologically valid understanding of object vision.
Collapse
|
16
|
BCI-Based Control for Ankle Exoskeleton T-FLEX: Comparison of Visual and Haptic Stimuli with Stroke Survivors. SENSORS 2021; 21:s21196431. [PMID: 34640750 PMCID: PMC8512904 DOI: 10.3390/s21196431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Brain–computer interface (BCI) remains an emerging tool that seeks to improve the patient interaction with the therapeutic mechanisms and to generate neuroplasticity progressively through neuromotor abilities. Motor imagery (MI) analysis is the most used paradigm based on the motor cortex’s electrical activity to detect movement intention. It has been shown that motor imagery mental practice with movement-associated stimuli may offer an effective strategy to facilitate motor recovery in brain injury patients. In this sense, this study aims to present the BCI associated with visual and haptic stimuli to facilitate MI generation and control the T-FLEX ankle exoskeleton. To achieve this, five post-stroke patients (55–63 years) were subjected to three different strategies using T-FLEX: stationary therapy (ST) without motor imagination, motor imagination with visual stimulation (MIV), and motor imagination with visual-haptic inducement (MIVH). The quantitative characterization of both BCI stimuli strategies was made through the motor imagery accuracy rate, the electroencephalographic (EEG) analysis during the MI active periods, the statistical analysis, and a subjective patient’s perception. The preliminary results demonstrated the viability of the BCI-controlled ankle exoskeleton system with the beta rebound, in terms of patient’s performance during MI active periods and satisfaction outcomes. Accuracy differences employing haptic stimulus were detected with an average of 68% compared with the 50.7% over only visual stimulus. However, the power spectral density (PSD) did not present changes in prominent activation of the MI band but presented significant variations in terms of laterality. In this way, visual and haptic stimuli improved the subject’s MI accuracy but did not generate differential brain activity over the affected hemisphere. Hence, long-term sessions with a more extensive sample and a more robust algorithm should be carried out to evaluate the impact of the proposed system on neuronal and motor evolution after stroke.
Collapse
|
17
|
Aliakbaryhosseinabadi S, Dosen S, Savic AM, Blicher J, Farina D, Mrachacz-Kersting N. Participant-specific classifier tuning increases the performance of hand movement detection from EEG in patients with amyotrophic lateral sclerosis. J Neural Eng 2021; 18. [PMID: 34280899 DOI: 10.1088/1741-2552/ac15e3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/19/2021] [Indexed: 11/11/2022]
Abstract
Objective.Brain-computer interface (BCI) systems can be employed to provide motor and communication assistance to patients suffering from neuromuscular diseases, such as amyotrophic lateral sclerosis (ALS). Movement related cortical potentials (MRCPs), which are naturally generated during movement execution, can be used to implement a BCI triggered by motor attempts. Such BCI could assist impaired motor functions of ALS patients during disease progression, and facilitate the training for the generation of reliable MRCPs. The training aspect is relevant to establish a communication channel in the late stage of the disease. Therefore, the aim of this study was to investigate the possibility of detecting MRCPs associated to movement intention in ALS patients with different levels of disease progression from slight to complete paralysis.Approach.Electroencephalography signals were recorded from nine channels in 30 ALS patients at various stages of the disease while they performed or attempted to perform hand movements timed to a visual cue. The movement detection was implemented using offline classification between movement and rest phase. Temporal and spectral features were extracted using 500 ms sliding windows with 50% overlap. The detection was tested for each individual channel and two surrogate channels by performing feature selection followed by classification using linear and non-linear support vector machine and linear discriminant analysis.Main results.The results demonstrated that the detection performance was high in all patients (accuracy 80.5 ± 5.6%) but that the classification parameters (channel, features and classifier) leading to the best performance varied greatly across patients. When the same channel and classifier were used for all patients (participant-generic analysis), the performance significantly decreased (accuracy 74 ± 8.3%).Significance.The present study demonstrates that to maximize the detection of brain waves across ALS patients at different stages of the disease, the classification pipeline should be tuned to each patient individually.
Collapse
Affiliation(s)
| | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Andrej M Savic
- Science and Research Centre, University of Belgrade-School of Electrical Engineering, Belgrade 11000, Serbia
| | - Jakob Blicher
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Århus University, Aarhus, Denmark
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Natalie Mrachacz-Kersting
- Department of Sport and Sport Science, Albert-Ludwigs University Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
18
|
Schulz R, Bönstrup M, Guder S, Liu J, Frey B, Quandt F, Krawinkel LA, Cheng B, Thomalla G, Gerloff C. Corticospinal Tract Microstructure Correlates With Beta Oscillatory Activity in the Primary Motor Cortex After Stroke. Stroke 2021; 52:3839-3847. [PMID: 34412514 DOI: 10.1161/strokeaha.121.034344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cortical beta oscillations are reported to serve as robust measures of the integrity of the human motor system. Their alterations after stroke, such as reduced movement-related beta desynchronization in the primary motor cortex, have been repeatedly related to the level of impairment. However, there is only little data whether such measures of brain function might directly relate to structural brain changes after stroke. METHODS This multimodal study investigated 18 well-recovered patients with stroke (mean age 65 years, 12 males) by means of task-related EEG and diffusion-weighted structural MRI 3 months after stroke. Beta power at rest and movement-related beta desynchronization was assessed in 3 key motor areas of the ipsilesional hemisphere that are the primary motor cortex (M1), the ventral premotor area and the supplementary motor area. Template trajectories of corticospinal tracts (CST) originating from M1, premotor cortex, and supplementary motor area were used to quantify the microstructural state of CST subcomponents. Linear mixed-effects analyses were used to relate tract-related mean fractional anisotropy to EEG measures. RESULTS In the present cohort, we detected statistically significant reductions in ipsilesional CST fractional anisotropy but no alterations in EEG measures when compared with healthy controls. However, in patients with stroke, there was a significant association between both beta power at rest (P=0.002) and movement-related beta desynchronization (P=0.003) in M1 and fractional anisotropy of the CST specifically originating from M1. Similar structure-function relationships were neither evident for ventral premotor area and supplementary motor area, particularly with respect to their CST subcomponents originating from premotor cortex and supplementary motor area, in patients with stroke nor in controls. CONCLUSIONS These data suggest there might be a link connecting microstructure of the CST originating from M1 pyramidal neurons and beta oscillatory activity, measures which have already been related to motor impairment in patients with stroke by previous reports.
Collapse
Affiliation(s)
- Robert Schulz
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (R.S., M.B., S.G., B.F., F.Q., L.A.K., B.C., G.T., C.G.)
| | - Marlene Bönstrup
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (R.S., M.B., S.G., B.F., F.Q., L.A.K., B.C., G.T., C.G.).,Department of Neurology, University Medical Centre, Leipzig, Germany (M.B.)
| | - Stephanie Guder
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (R.S., M.B., S.G., B.F., F.Q., L.A.K., B.C., G.T., C.G.)
| | - Jingchun Liu
- Department of Radiology, Tianjin Medical University General Hospital, China (J.L.)
| | - Benedikt Frey
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (R.S., M.B., S.G., B.F., F.Q., L.A.K., B.C., G.T., C.G.)
| | - Fanny Quandt
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (R.S., M.B., S.G., B.F., F.Q., L.A.K., B.C., G.T., C.G.)
| | - Lutz A Krawinkel
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (R.S., M.B., S.G., B.F., F.Q., L.A.K., B.C., G.T., C.G.)
| | - Bastian Cheng
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (R.S., M.B., S.G., B.F., F.Q., L.A.K., B.C., G.T., C.G.)
| | - Götz Thomalla
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (R.S., M.B., S.G., B.F., F.Q., L.A.K., B.C., G.T., C.G.)
| | - Christian Gerloff
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Germany (R.S., M.B., S.G., B.F., F.Q., L.A.K., B.C., G.T., C.G.)
| |
Collapse
|
19
|
Kocagoncu E, Klimovich-Gray A, Hughes LE, Rowe JB. Evidence and implications of abnormal predictive coding in dementia. Brain 2021; 144:3311-3321. [PMID: 34240109 PMCID: PMC8677549 DOI: 10.1093/brain/awab254] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/15/2021] [Accepted: 06/17/2021] [Indexed: 11/14/2022] Open
Abstract
The diversity of cognitive deficits and neuropathological processes associated with dementias has encouraged divergence in pathophysiological explanations of disease. Here, we review an alternative framework that emphasizes convergent critical features of cognitive pathophysiology. Rather than the loss of ‘memory centres’ or ‘language centres’, or singular neurotransmitter systems, cognitive deficits are interpreted in terms of aberrant predictive coding in hierarchical neural networks. This builds on advances in normative accounts of brain function, specifically the Bayesian integration of beliefs and sensory evidence in which hierarchical predictions and prediction errors underlie memory, perception, speech and behaviour. We describe how analogous impairments in predictive coding in parallel neurocognitive systems can generate diverse clinical phenomena, including the characteristics of dementias. The review presents evidence from behavioural and neurophysiological studies of perception, language, memory and decision-making. The reformulation of cognitive deficits in terms of predictive coding has several advantages. It brings diverse clinical phenomena into a common framework; it aligns cognitive and movement disorders; and it makes specific predictions on cognitive physiology that support translational and experimental medicine studies. The insights into complex human cognitive disorders from the predictive coding framework may therefore also inform future therapeutic strategies.
Collapse
Affiliation(s)
- Ece Kocagoncu
- Cambridge Centre for Frontotemporal Dementia, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Laura E Hughes
- Cambridge Centre for Frontotemporal Dementia, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Cambridge Centre for Frontotemporal Dementia, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
McMackin R, Dukic S, Costello E, Pinto-Grau M, McManus L, Broderick M, Chipika R, Iyer PM, Heverin M, Bede P, Muthuraman M, Pender N, Hardiman O, Nasseroleslami B. Cognitive network hyperactivation and motor cortex decline correlate with ALS prognosis. Neurobiol Aging 2021; 104:57-70. [PMID: 33964609 DOI: 10.1016/j.neurobiolaging.2021.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
We aimed to quantitatively characterize progressive brain network disruption in Amyotrophic Lateral Sclerosis (ALS) during cognition using the mismatch negativity (MMN), an electrophysiological index of attention switching. We measured the MMN using 128-channel EEG longitudinally (2-5 timepoints) in 60 ALS patients and cross-sectionally in 62 healthy controls. Using dipole fitting and linearly constrained minimum variance beamforming we investigated cortical source activity changes over time. In ALS, the inferior frontal gyri (IFG) show significantly lower baseline activity compared to controls. The right IFG and both superior temporal gyri (STG) become progressively hyperactive longitudinally. By contrast, the left motor and dorsolateral prefrontal cortices are initially hyperactive, declining progressively. Baseline motor hyperactivity correlates with cognitive disinhibition, and lower baseline IFG activities correlate with motor decline rate, while left dorsolateral prefrontal activity predicted cognitive and behavioural impairment. Shorter survival correlates with reduced baseline IFG and STG activity and later STG hyperactivation. Source-resolved EEG facilitates quantitative characterization of symptom-associated and symptom-preceding motor and cognitive-behavioral cortical network decline in ALS.
Collapse
Affiliation(s)
- Roisin McMackin
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Stefan Dukic
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Emmet Costello
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Marta Pinto-Grau
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Lara McManus
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Michael Broderick
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Rangariroyashe Chipika
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Computational Neuroimaging Group, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Parameswaran M Iyer
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Beaumont Hospital Dublin, Department of Neurology, Dublin 9, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Peter Bede
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Computational Neuroimaging Group, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| | - Muthuraman Muthuraman
- Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Johannes-Gutenberg-University Hospital, Mainz, Germany
| | - Niall Pender
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands; Beaumont Hospital Dublin, Department of Neurology, Dublin 9, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland; Beaumont Hospital Dublin, Department of Neurology, Dublin 9, Ireland.
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity College Dublin, the University of Dublin, Dublin 2, Ireland
| |
Collapse
|
21
|
McMackin R, Dukic S, Costello E, Pinto-Grau M, Keenan O, Fasano A, Buxo T, Heverin M, Reilly RB, Pender N, Hardiman O, Nasseroleslami B. Sustained attention to response task-related beta oscillations relate to performance and provide a functional biomarker in ALS. J Neural Eng 2021; 18. [PMID: 33395671 DOI: 10.1088/1741-2552/abd829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To characterize the cortical oscillations associated with performance of the sustained attention to response task (SART) and their disruptions in the neurodegenerative condition amyotrophic lateral sclerosis (ALS). APPROACH A randomised SART was undertaken by 24 ALS patients and 33 healthy controls during 128-channel electroencephalography. Complex Morlet wavelet transform was used to quantify non-phase-locked oscillatory activity in event-related spectral perturbations associated with performing the SART. We investigated the relationships between these perturbations and task performance, and associated motor and cognitive changes in ALS Main results: SART induced theta-band event-related synchronization (ERS) and alpha- and beta-band event-related desynchronization (ERD), followed by rebound beta ERS, in both Go and NoGo trials across the frontoparietal axis, with NoGo trials eliciting greater theta ERS and lesser beta ERS. Controls with greater Go trial beta ERS performed with greater speed and less accuracy. ALS patients exhibited increased anticipation compared to controls but similar reaction times and accuracy. Prefrontal (AUROC=0.8, Cohen's d=0.97) and parietal (AUROC=0.82, Cohen's d=1.12) beta-band ERD was significantly reduced in ALS but did not relate to performance, while patients with higher ECAS ALS-specific scores demonstrated greater ERS in beta (rho=0.72) upon successful withholding. SIGNIFICANCE EEG measurement of task-related oscillation changes reveals variation in cortical network engagement in relation to speed versus accuracy strategies. Such measures can also capture cognitive and motor network pathophysiology in the absence of task performance decline, which may facilitate development of more sensitive early neurodegenerative disease biomarkers.
Collapse
Affiliation(s)
- Roisin McMackin
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, Room 5.40, Trinity Biomedical Sciences Institute,, 152-160 Pearse St.,, Dublin, Dublin, 2, IRELAND
| | - Stefan Dukic
- Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Heidelberglaan 100, Utrecht, Utrecht, 3584 CX, NETHERLANDS
| | - Emmet Costello
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Marta Pinto-Grau
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Orla Keenan
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Antonio Fasano
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Teresa Buxo
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Mark Heverin
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Richard B Reilly
- Trinity Centre for Biomedical Engineering, University of Dublin Trinity College, Dublin 2, Dublin, 2, IRELAND
| | - Niall Pender
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity College Dublin Academic Unit of Neurology, 152-160 Pearse St., Dublin, D02 R590, IRELAND
| |
Collapse
|
22
|
Magnuson JR, McNeil CJ. Low-frequency neural activity at rest is correlated with the movement-related cortical potentials elicited during both real and imagined movements. Neurosci Lett 2020; 742:135530. [PMID: 33248162 DOI: 10.1016/j.neulet.2020.135530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
Ongoing low-frequency activity in the brain has been shown to indicate an inhibitory neural state; however, the effects of this low-frequency activity on event-related neural processes associated with movement preparation, including movement-related cortical potentials (MRCPs) or more specifically, the motor potential (MP), and event-related desynchronization (ERD) have not been assessed. Using data from 48 participants, the current study examined how ongoing mu and beta frequency activity at rest relates to the MP and mu and beta ERD during real or imagined movement of the fingers. Resting state EEG activity was collected for 1 min, prior to the real and imagined finger movement trials. 20 real and 20 imagined movement trials were collected for each hand. Resting beta activity correlated with MP amplitude during movement trials for both the right (r(47) = -0.304, p = 0.035) and left (r(47) = -0.468, p < 0.001) hands, whereas resting mu correlated with MP amplitude during motor imagery trials of both the right (r(47) = -0.289, p = 0.046) and left (r(47) = -0.330, p = 0.020) hands. Ongoing mu and beta activity was not significantly correlated with mu or beta ERD for both the movement and imagery trials. A connection between low-frequency activity and MP could inform biofeedback procedures that promote a reduction of this activity, ultimately allowing for easier identification of the intent to move.
Collapse
Affiliation(s)
- Justine R Magnuson
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada.
| | - Chris J McNeil
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
23
|
Zilio F, Gomez-Pilar J, Cao S, Zhang J, Zang D, Qi Z, Tan J, Hiromi T, Wu X, Fogel S, Huang Z, Hohmann MR, Fomina T, Synofzik M, Grosse-Wentrup M, Owen AM, Northoff G. Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states. Neuroimage 2020; 226:117579. [PMID: 33221441 DOI: 10.1016/j.neuroimage.2020.117579] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. An open question is how these intrinsic timescales are related to sensory or motor information processing and whether these dynamics have common patterns in different behavioral states. We address these questions by investigating the brain's intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked-in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory processing (from awake states over N1, N2, N3). We employed a combination of measures from EEG resting-state data: auto-correlation window (ACW), power spectral density (PSD), and power-law exponent (PLE). Prolonged neural timescales accompanied by a shift towards slower frequencies were observed in the conditions with sensory deficits, but not in conditions with motor deficits. Our results establish that the spontaneous activity's intrinsic neural timescale is related to the neural capacity that specifically supports sensory rather than motor information processing in the healthy brain.
Collapse
Affiliation(s)
- Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy.
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Shumei Cao
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Zang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaxing Tan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tanigawa Hiromi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Stuart Fogel
- The Brain and Mind Institute, Department of Physiology and Pharmacology and the Department of Psychology, University of Western Ontario, Canada
| | - Zirui Huang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matthias R Hohmann
- Department for Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Tatiana Fomina
- Department for Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Moritz Grosse-Wentrup
- Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Austria
| | - Adrian M Owen
- The Brain and Mind Institute, Department of Physiology and Pharmacology and the Department of Psychology, University of Western Ontario, Canada
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| |
Collapse
|
24
|
Deligani RJ, Hosni SI, Borgheai SB, McLinden J, Zisk AH, Mankodiya K, Shahriari Y. Electrical and Hemodynamic Neural Functions in People With ALS: An EEG-fNIRS Resting-State Study. IEEE Trans Neural Syst Rehabil Eng 2020; 28:3129-3139. [PMID: 33055020 DOI: 10.1109/tnsre.2020.3031495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease that causes the progressive loss of voluntary muscle control. Recent studies have reported conflicting results on alterations in resting-state functional brain networks in ALS by adopting unimodal techniques that measure either electrophysiological or vascular-hemodynamic neural functions. However, no study to date has explored simultaneous electrical and vascular-hemodynamic changes in the resting-state brain in ALS. Using complementary multimodal electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) recording and analysis techniques, we explored the underlying multidimensional neural contributions to altered oscillations and functional connectivity in people with ALS. METHODS 10 ALS patients and 9 age-matched controls underwent multimodal EEG-fNIRS recording in the resting state. Resting-state functional connectivity (RSFC) and power spectra of both modalities in both groups were analyzed and compared statistically. RESULTS Increased fronto-parietal EEG connectivity in the alpha and beta bands and increased interhemispheric and right intra-hemispheric fNIRS connectivity in the frontal and prefrontal regions were observed in ALS. Frontal, central, and temporal theta and alpha EEG power decreased in ALS, as did parietal and occipital alpha EEG power, while frontal and parietal hemodynamic spectral power increased in ALS. SIGNIFICANCE These results suggest that electro-vascular disruption in neuronal networks extends to the extra-motor regions in ALS patients, which can ultimately introduce novel neural markers of ALS that can be exploited further as diagnostic and prognostic tools.
Collapse
|
25
|
Hosni SM, Deligani RJ, Zisk A, McLinden J, Borgheai SB, Shahriari Y. An exploration of neural dynamics of motor imagery for people with amyotrophic lateral sclerosis. J Neural Eng 2019; 17:016005. [PMID: 31597125 DOI: 10.1088/1741-2552/ab4c75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Studies of the neuropathological effects of amyotrophic lateral sclerosis (ALS) on the underlying motor system have investigated abnormalities in the magnitude and timing of the event-related desynchronization (ERD) and synchronization (ERS) during motor execution (ME). However, the spatio-spectral-temporal dynamics of these sensorimotor oscillations during motor imagery (MI) have not been fully explored for these patients. This study explores the neural dynamics of sensorimotor oscillations for ALS patients during MI by quantifying ERD/ERS features in frequency, time, and space. APPROACH Electroencephalogram (EEG) data were recorded from six patients with ALS and 11 age-matched healthy controls (HC) while performing a MI task. ERD/ERS features were extracted using wavelet-based time-frequency analysis and compared between the two groups to quantify the abnormal neural dynamics of ALS in terms of both time and frequency. Topographic correlation analysis was conducted to compare the localization of MI activity between groups and to identify subject-specific frequencies in the µ and β frequency bands. MAIN RESULTS Overall, reduced and delayed ERD was observed for ALS patients, particularly during right-hand MI. ERD features were also correlated with ALS clinical scores, specifically disease duration, bulbar, and cognitive functions. SIGNIFICANCE The analyses in this study quantify abnormalities in the magnitude and timing of sensorimotor oscillations for ALS patients during MI tasks. Our findings reveal notable differences between MI and existing results on ME in ALS. The observed alterations are speculated to reflect disruptions in the underlying cortical networks involved in MI functions. Quantifying the neural dynamics of MI plays an important role in the study of EEG-based cortical markers for ALS.
Collapse
Affiliation(s)
- Sarah M Hosni
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States of America
| | | | | | | | | | | |
Collapse
|
26
|
Jenson D, Thornton D, Harkrider AW, Saltuklaroglu T. Influences of cognitive load on sensorimotor contributions to working memory: An EEG investigation of mu rhythm activity during speech discrimination. Neurobiol Learn Mem 2019; 166:107098. [DOI: 10.1016/j.nlm.2019.107098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
|
27
|
Aoh Y, Hsiao HJ, Lu MK, Macerollo A, Huang HC, Hamada M, Tsai CH, Chen JC. Event-Related Desynchronization/Synchronization in Spinocerebellar Ataxia Type 3. Front Neurol 2019; 10:822. [PMID: 31417491 PMCID: PMC6684955 DOI: 10.3389/fneur.2019.00822] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant, cerebellar degeneration predominant disease caused by excessive CAG repeats. We examined event-related dysynchronization/synchronization (ERD/ERS) in patients with SCA3. Methods: We assessed ERD/ERS of self-paced voluntary hand movements in 15 patients with genetically proven SCA3 in comparison with healthy controls. Results: In ERS, a significant interaction effect between group, frequency, and period (F = 1.591; p = 0.005; ρI = 0.86) was observed. The post-hoc two-tailed independent t-test showed significant differences in high beta and low beta ERS. By contrast, in ERD, no apparent differences were observed in the pattern of patients with SCA3 in comparison with healthy controls (F = 1.01; p = 0.442). Conclusion: The study revealed a decreased ERS in patients with SCA3, especially at the frequency of 20–30 Hz. This study elucidates the significant role of cerebellum in motor control.
Collapse
Affiliation(s)
- Yu Aoh
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung City, Taiwan
| | - Han-Jun Hsiao
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung City, Taiwan
| | - Ming-Kuei Lu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung City, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Antonella Macerollo
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - Hui-Chun Huang
- School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Masashi Hamada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chon-Haw Tsai
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung City, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan
| | - Jui-Cheng Chen
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung City, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung City, Taiwan.,Department of Neurology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
28
|
Dukic S, McMackin R, Buxo T, Fasano A, Chipika R, Pinto-Grau M, Costello E, Schuster C, Hammond M, Heverin M, Coffey A, Broderick M, Iyer PM, Mohr K, Gavin B, Pender N, Bede P, Muthuraman M, Lalor EC, Hardiman O, Nasseroleslami B. Patterned functional network disruption in amyotrophic lateral sclerosis. Hum Brain Mapp 2019; 40:4827-4842. [PMID: 31348605 PMCID: PMC6852475 DOI: 10.1002/hbm.24740] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease primarily affecting motor function, with additional evidence of extensive nonmotor involvement. Despite increasing recognition of the disease as a multisystem network disorder characterised by impaired connectivity, the precise neuroelectric characteristics of impaired cortical communication remain to be fully elucidated. Here, we characterise changes in functional connectivity using beamformer source analysis on resting‐state electroencephalography recordings from 74 ALS patients and 47 age‐matched healthy controls. Spatiospectral characteristics of network changes in the ALS patient group were quantified by spectral power, amplitude envelope correlation (co‐modulation) and imaginary coherence (synchrony). We show patterns of decreased spectral power in the occipital and temporal (δ‐ to β‐band), lateral/orbitofrontal (δ‐ to θ‐band) and sensorimotor (β‐band) regions of the brain in patients with ALS. Furthermore, we show increased co‐modulation of neural oscillations in the central and posterior (δ‐, θ‐ and γl‐band) and frontal (δ‐ and γl‐band) regions, as well as decreased synchrony in the temporal and frontal (δ‐ to β‐band) and sensorimotor (β‐band) regions. Factorisation of these complex connectivity patterns reveals a distinct disruption of both motor and nonmotor networks. The observed changes in connectivity correlated with structural MRI changes, functional motor scores and cognitive scores. Characteristic patterned changes of cortical function in ALS signify widespread disease‐associated network disruption, pointing to extensive dysfunction of both motor and cognitive networks. These statistically robust findings, that correlate with clinical scores, provide a strong rationale for further development as biomarkers of network disruption for future clinical trials.
Collapse
Affiliation(s)
- Stefan Dukic
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Department of Neurology, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Roisin McMackin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Teresa Buxo
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Antonio Fasano
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Rangariroyashe Chipika
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Marta Pinto-Grau
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Emmet Costello
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Christina Schuster
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Michaela Hammond
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Mark Heverin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Amina Coffey
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Michael Broderick
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Parameswaran M Iyer
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Kieran Mohr
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Brighid Gavin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Niall Pender
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Muthuraman Muthuraman
- Movement disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Johannes-Gutenberg-University Hospital, Mainz, Germany
| | - Edmund C Lalor
- Trinity Centre for Bioengineering, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Department of Biomedical Engineering and Department of Neuroscience, University of Rochester, Rochester, New York
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, Ireland.,Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Bahman Nasseroleslami
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Mykland MS, Bjørk MH, Stjern M, Omland PM, Uglem M, Sand T. Fluctuations of sensorimotor processing in migraine: a controlled longitudinal study of beta event related desynchronization. J Headache Pain 2019; 20:77. [PMID: 31288756 PMCID: PMC6734210 DOI: 10.1186/s10194-019-1026-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Background The migraine brain seems to undergo cyclic fluctuations of sensory processing. For instance, during the preictal phase, migraineurs experience symptoms and signs of altered pain perception as well as other well-known premonitory CNS-symptoms. In the present study we measured EEG-activation to non-painful motor and sensorimotor tasks in the different phases of the migraine cycle by longitudinal measurements of beta event related desynchronization (beta-ERD). Methods We recorded electroencephalography (EEG) of 41 migraine patients and 31 healthy controls. Each subject underwent three EEG recordings on three different days with classification of each EEG recording according to the actual migraine phase. During each recording, subjects performed one motor and one sensorimotor task with the flexion-extension movement of the right wrist. Results Migraine patients had significantly increased beta-ERD and higher baseline beta power at the contralateral C3 electrode overlying the primary sensorimotor cortex in the preictal phase compared to the interictal phase. We found no significant differences in beta-ERD or baseline beta power between interictal migraineurs and controls. Conclusion Increased preictal baseline beta activity may reflect a decrease in pre-activation in the sensorimotor cortex. Altered pre-activation may lead to changes in thresholds for inhibitory responses and increased beta-ERD response, possibly reflecting a generally increased preictal cortical responsivity in migraine. Cyclic fluctuations in the activity of second- and third-order afferent somatosensory neurons, and their associated cortical and/or thalamic interneurons, may accordingly also be a central part of the migraine pathophysiology.
Collapse
Affiliation(s)
- Martin Syvertsen Mykland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Marte Helene Bjørk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Marit Stjern
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Petter Moe Omland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Martin Uglem
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
30
|
Proudfoot M, Bede P, Turner MR. Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis. Front Neurol 2019; 9:1148. [PMID: 30671016 PMCID: PMC6332509 DOI: 10.3389/fneur.2018.01148] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/11/2018] [Indexed: 01/30/2023] Open
Abstract
Advances in neuroimaging, complementing histopathological insights, have established a multi-system involvement of cerebral networks beyond the traditional neuromuscular pathological view of amyotrophic lateral sclerosis (ALS). The development of effective disease-modifying therapy remains a priority and this will be facilitated by improved biomarkers of motor system integrity against which to assess the efficacy of candidate drugs. Functional MRI (FMRI) is an established measure of both cerebral activity and connectivity, but there is an increasing recognition of neuronal oscillations in facilitating long-distance communication across the cortical surface. Such dynamic synchronization vastly expands the connectivity foundations defined by traditional neuronal architecture. This review considers the unique pathogenic insights afforded by the capture of cerebral disease activity in ALS using FMRI and encephalography.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Bede
- Computational Neuroimaging Group, Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Saltuklaroglu T, Bowers A, Harkrider AW, Casenhiser D, Reilly KJ, Jenson DE, Thornton D. EEG mu rhythms: Rich sources of sensorimotor information in speech processing. BRAIN AND LANGUAGE 2018; 187:41-61. [PMID: 30509381 DOI: 10.1016/j.bandl.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/27/2017] [Accepted: 09/23/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Tim Saltuklaroglu
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA.
| | - Andrew Bowers
- University of Arkansas, Epley Center for Health Professions, 606 N. Razorback Road, Fayetteville, AR 72701, USA
| | - Ashley W Harkrider
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - Devin Casenhiser
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - Kevin J Reilly
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - David E Jenson
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Spokane, WA 99210-1495, USA
| | - David Thornton
- Department of Hearing, Speech, and Language Sciences, Gallaudet University, 800 Florida Avenue NE, Washington, DC 20002, USA
| |
Collapse
|
32
|
Hughes LE, Rittman T, Robbins TW, Rowe JB. Reorganization of cortical oscillatory dynamics underlying disinhibition in frontotemporal dementia. Brain 2018; 141:2486-2499. [PMID: 29992242 PMCID: PMC6061789 DOI: 10.1093/brain/awy176] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/21/2018] [Accepted: 05/13/2018] [Indexed: 12/16/2022] Open
Abstract
The distribution of pathology in frontotemporal dementia is anatomically selective, to distinct cortical regions and with differential neurodegeneration across the cortical layers. The cytoarchitecture and connectivity of cortical laminae preferentially supports frequency-specific oscillations and hierarchical information transfer between brain regions. We therefore predicted that in frontotemporal dementia, core functional deficits such as disinhibition would be associated with differences in the frequency spectrum and altered cross-frequency coupling between frontal cortical regions. We examined this hypothesis using a 'Go-NoGo' response inhibition paradigm with 18 patients with behavioural variant frontotemporal dementia and 20 healthy aged-matched controls during magnetoencephalography. During Go and NoGo trials, beta desynchronization was severely attenuated in patients. Beta power was associated with increased impulsivity, as measured by the Cambridge Behavioural Inventory, a carer-based questionnaire of changes in everyday behaviour. To quantify the changes in cross-frequency coupling in the frontal lobe, we used dynamic causal modelling to test a family of hierarchical casual models, which included the inferior frontal gyrus, pre-supplementary motor area (preSMA) and primary motor cortex. This analysis revealed evidence for cross-frequency coupling in a fully connected network in both groups. However, in the patient group, we identified a significant loss of reciprocal connectivity of the inferior frontal gyrus, particularly for interactions in the gamma band and for theta to alpha coupling. Importantly, although prefrontal coupling was diminished, gamma connectivity between preSMA and motor cortex was enhanced in patients. We propose that the disruption of behavioural control arises from reduced frequency-specific connectivity of the prefrontal cortex, together with a hyper-synchronous reorganization of connectivity among preSMA and motor regions. These results are supported by preclinical evidence of the selectivity of frontotemporal lobar degeneration on oscillatory dynamics, and provide a clinically relevant yet precise neurophysiological signature of behavioural control as a potential pharmacological target for early phase experimental medicines studies.
Collapse
Affiliation(s)
- Laura E Hughes
- Department of Clinical Neurosciences, University of Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, Cambridge, UK
| |
Collapse
|
33
|
Jenson D, Reilly KJ, Harkrider AW, Thornton D, Saltuklaroglu T. Trait related sensorimotor deficits in people who stutter: An EEG investigation of μ rhythm dynamics during spontaneous fluency. Neuroimage Clin 2018; 19:690-702. [PMID: 29872634 PMCID: PMC5986168 DOI: 10.1016/j.nicl.2018.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/28/2018] [Accepted: 05/20/2018] [Indexed: 01/09/2023]
Abstract
Stuttering is associated with compromised sensorimotor control (i.e., internal modeling) across the dorsal stream and oscillations of EEG mu (μ) rhythms have been proposed as reliable indices of anterior dorsal stream processing. The purpose of this study was to compare μ rhythm oscillatory activity between (PWS) and matched typically fluent speakers (TFS) during spontaneously fluent overt and covert speech production tasks. Independent component analysis identified bilateral μ components from 24/27 PWS and matched TFS that localized over premotor cortex. Time-frequency analysis of the left hemisphere μ clusters demonstrated significantly reduced μ-α and μ-β ERD (pCLUSTER < 0.05) in PWS across the time course of overt and covert speech production, while no group differences were found in the right hemisphere in any condition. Results were interpreted through the framework of State Feedback Control. They suggest that weak forward modeling and evaluation of sensory feedback across the time course of speech production characterizes the trait related sensorimotor impairment in PWS. This weakness is proposed to represent an underlying sensorimotor instability that may predispose the speech of PWS to breakdown.
Collapse
Affiliation(s)
- David Jenson
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States.
| | - Kevin J Reilly
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - Ashley W Harkrider
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - David Thornton
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - Tim Saltuklaroglu
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| |
Collapse
|
34
|
Proudfoot M, Colclough GL, Quinn A, Wuu J, Talbot K, Benatar M, Nobre AC, Woolrich MW, Turner MR. Increased cerebral functional connectivity in ALS: A resting-state magnetoencephalography study. Neurology 2018; 90:e1418-e1424. [PMID: 29661904 PMCID: PMC5902786 DOI: 10.1212/wnl.0000000000005333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE We sought to assess cortical function in amyotrophic lateral sclerosis (ALS) using noninvasive neural signal recording. METHODS Resting-state magnetoencephalography was used to measure power fluctuations in neuronal oscillations from distributed cortical parcels in 24 patients with ALS and 24 healthy controls. A further 9 patients with primary lateral sclerosis and a group of 15 asymptomatic carriers of genetic mutations associated with ALS were also studied. RESULTS Increased functional connectivity, particularly from the posterior cingulate cortex, was demonstrated in both patient groups compared to healthy controls. Directionally similar patterns were also evident in the asymptomatic genetic mutation carrier group. CONCLUSION Increased cortical functional connectivity elevation is a quantitative marker that reflects ALS pathology across its clinical spectrum, and may develop during the presymptomatic period. The amelioration of pathologic magnetoencephalography signals might be a marker sensitive enough to provide proof-of-principle in the development of future neuroprotective therapeutics.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Giles L Colclough
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Andrew Quinn
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Joanne Wuu
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Kevin Talbot
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Michael Benatar
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Anna C Nobre
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL
| | - Mark W Woolrich
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL.
| | - Martin R Turner
- From the Nuffield Department of Clinical Neurosciences (M.P., K.T., M.R.T.), and Oxford Centre for Human Brain Activity (M.P., G.L.C., A.Q., A.C.N., M.W.W., M.R.T.), University of Oxford, UK; and Miller School of Medicine (J.W., M.B.), University of Miami, FL.
| |
Collapse
|
35
|
Lee JJ, Schmit BD. Effect of sensory attenuation on cortical movement-related oscillations. J Neurophysiol 2017; 119:971-978. [PMID: 29187547 DOI: 10.1152/jn.00171.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the impact of induced sensory deficits on cortical, movement-related oscillations measured using electroencephalography (EEG). We hypothesized that EEG patterns in healthy subjects with induced sensory reduction would be comparable to EEG found after chronic loss of sensory feedback. EEG signals from 64 scalp locations were measured from 10 healthy subjects. Participants dorsiflexed their ankle after prolonged vibration of the tibialis anterior (TA). Beta band time frequency decompositions were calculated using wavelets and compared across conditions. Changes in patterns of movement-related brain activity were observed following attenuation of sensory feedback. A significant decrease in beta power of event-related synchronization was associated with simple ankle dorsiflexion after prolonged vibration of the TA. Attenuation of sensory feedback in young, healthy subjects led to a corresponding decrease in beta band synchronization. This temporary change in beta oscillations suggests that these modulations are a mechanism for sensorimotor integration. The loss of sensory feedback found in spinal cord injury patients contributes to changes in EEG signals underlying motor commands. Similar alterations in cortical signals in healthy subjects with reduced sensory feedback implies these changes reflect normal sensorimotor integration after reduced sensory input rather than brain plasticity. NEW & NOTEWORTHY Transient attenuation of sensory afferents in young, healthy adults led to similar changes in brain activity found previously in volunteers with incomplete spinal cord injury. Beta band power associated with ankle movement in these controls was attenuated after prolonged vibration of the tibialis anterior. Evoked potential measurements suggest that prolonged vibration reduces phasing across trials as the mechanism behind this attenuation of cortical activity.
Collapse
Affiliation(s)
- Joseph J Lee
- Department of Biomedical Engineering, Marquette University , Milwaukee, Wisconsin
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University , Milwaukee, Wisconsin
| |
Collapse
|
36
|
Giovanni A, Capone F, di Biase L, Ferreri F, Florio L, Guerra A, Marano M, Paolucci M, Ranieri F, Salomone G, Tombini M, Thut G, Di Lazzaro V. Oscillatory Activities in Neurological Disorders of Elderly: Biomarkers to Target for Neuromodulation. Front Aging Neurosci 2017; 9:189. [PMID: 28659788 PMCID: PMC5468377 DOI: 10.3389/fnagi.2017.00189] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) has been under investigation as adjunct treatment of various neurological disorders with variable success. One challenge is the limited knowledge on what would be effective neuronal targets for an intervention, combined with limited knowledge on the neuronal mechanisms of NIBS. Motivated on the one hand by recent evidence that oscillatory activities in neural systems play a role in orchestrating brain functions and dysfunctions, in particular those of neurological disorders specific of elderly patients, and on the other hand that NIBS techniques may be used to interact with these brain oscillations in a controlled way, we here explore the potential of modulating brain oscillations as an effective strategy for clinical NIBS interventions. We first review the evidence for abnormal oscillatory profiles to be associated with a range of neurological disorders of elderly (e.g., Parkinson's disease (PD), Alzheimer's disease (AD), stroke, epilepsy), and for these signals of abnormal network activity to normalize with treatment, and/or to be predictive of disease progression or recovery. We then ask the question to what extent existing NIBS protocols have been tailored to interact with these oscillations and possibly associated dysfunctions. Our review shows that, despite evidence for both reliable neurophysiological markers of specific oscillatory dis-functionalities in neurological disorders and NIBS protocols potentially able to interact with them, there are few applications of NIBS aiming to explore clinical outcomes of this interaction. Our review article aims to point out oscillatory markers of neurological, which are also suitable targets for modification by NIBS, in order to facilitate in future studies the matching of technical application to clinical targets.
Collapse
Affiliation(s)
- Assenza Giovanni
- Clinical Neurology, Campus Biomedico University of RomeRome, Italy
| | | | - Lazzaro di Biase
- Clinical Neurology, Campus Biomedico University of RomeRome, Italy
- Nuffield Department of Clinical Neurosciences, University of OxfordOxford, United Kingdom
| | - Florinda Ferreri
- Clinical Neurology, Campus Biomedico University of RomeRome, Italy
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern FinlandKuopio, Finland
| | - Lucia Florio
- Clinical Neurology, Campus Biomedico University of RomeRome, Italy
| | - Andrea Guerra
- Clinical Neurology, Campus Biomedico University of RomeRome, Italy
- Nuffield Department of Clinical Neurosciences, University of OxfordOxford, United Kingdom
| | - Massimo Marano
- Clinical Neurology, Campus Biomedico University of RomeRome, Italy
| | - Matteo Paolucci
- Clinical Neurology, Campus Biomedico University of RomeRome, Italy
| | - Federico Ranieri
- Clinical Neurology, Campus Biomedico University of RomeRome, Italy
| | - Gaetano Salomone
- Clinical Neurology, Campus Biomedico University of RomeRome, Italy
| | - Mario Tombini
- Clinical Neurology, Campus Biomedico University of RomeRome, Italy
| | - Gregor Thut
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| | | |
Collapse
|
37
|
Mykland MS, Bjørk MH, Stjern M, Sand T. Alterations in post-movement beta event related synchronization throughout the migraine cycle: A controlled, longitudinal study. Cephalalgia 2017; 38:718-729. [PMID: 28478712 DOI: 10.1177/0333102417709011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background The migraine brain is believed to have altered cortical excitability compared to controls and between migraine cycle phases. Our aim was to evaluate post-activation excitability through post-movement beta event related synchronization (PMBS) in sensorimotor cortices with and without sensory discrimination. Subjects and methods We recorded EEG of 41 migraine patients and 31 healthy controls on three different days with classification of days in relation to migraine phases. During each recording, subjects performed one motor and one sensorimotor task with the right wrist. Controls and migraine patients in the interictal phase were compared with repeated measures (R-) ANOVA and two sample Student's t-test. Migraine phases were compared to the interictal phase with R-ANOVA and paired Student's t-test. Results The difference between PMBS at the contralateral and ipsilateral sensorimotor cortex was altered throughout the migraine cycle. Compared to the interictal phase, we found decreased PMBS at the ipsilateral sensorimotor cortex in the ictal phase and increased PMBS in the preictal phase. Lower ictal PMBS was found in bilateral sensorimotor cortices in patients with right side headache predominance. Conclusion The cyclic changes of PMBS in migraine patients may indicate that a dysfunction in deactivation and interhemispheric inhibition of the sensorimotor cortex is involved in the migraine attack cascade.
Collapse
Affiliation(s)
- Martin Syvertsen Mykland
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Marte Helene Bjørk
- 2 Department of Clinical Medicine, University of Bergen, Bergen, Norway
- 3 Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Marit Stjern
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- 4 Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Trond Sand
- 1 Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- 4 Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
38
|
Fraschini M, Demuru M, Hillebrand A, Cuccu L, Porcu S, Di Stefano F, Puligheddu M, Floris G, Borghero G, Marrosu F. EEG functional network topology is associated with disability in patients with amyotrophic lateral sclerosis. Sci Rep 2016; 6:38653. [PMID: 27924954 PMCID: PMC5141491 DOI: 10.1038/srep38653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/10/2016] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is one of the most severe neurodegenerative diseases, which is known to affect upper and lower motor neurons. In contrast to the classical tenet that ALS represents the outcome of extensive and progressive impairment of a fixed set of motor connections, recent neuroimaging findings suggest that the disease spreads along vast non-motor connections. Here, we hypothesised that functional network topology is perturbed in ALS, and that this reorganization is associated with disability. We tested this hypothesis in 21 patients affected by ALS at several stages of impairment using resting-state electroencephalography (EEG) and compared the results to 16 age-matched healthy controls. We estimated functional connectivity using the Phase Lag Index (PLI), and characterized the network topology using the minimum spanning tree (MST). We found a significant difference between groups in terms of MST dissimilarity and MST leaf fraction in the beta band. Moreover, some MST parameters (leaf, hierarchy and kappa) significantly correlated with disability. These findings suggest that the topology of resting-state functional networks in ALS is affected by the disease in relation to disability. EEG network analysis may be of help in monitoring and evaluating the clinical status of ALS patients.
Collapse
Affiliation(s)
- Matteo Fraschini
- Department of Electrical and Electronic Engineering, University of Cagliari, Piazza D’armi, Cagliari, 09123, Italy
| | - Matteo Demuru
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Centre, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Centre, Amsterdam, The Netherlands
| | - Lorenza Cuccu
- Biomedical Engineering Course, University of Cagliari, Piazza D’armi, Cagliari, 09123, Italy
| | - Silvia Porcu
- Department of Neurology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | | | - Monica Puligheddu
- Department of Neurology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Gianluca Floris
- Department of Neurology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Giuseppe Borghero
- Department of Neurology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Neurology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
39
|
Proudfoot M, Rohenkohl G, Quinn A, Colclough GL, Wuu J, Talbot K, Woolrich MW, Benatar M, Nobre AC, Turner MR. Altered cortical beta-band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis. Hum Brain Mapp 2016; 38:237-254. [PMID: 27623516 PMCID: PMC5215611 DOI: 10.1002/hbm.23357] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/07/2016] [Accepted: 08/11/2016] [Indexed: 12/28/2022] Open
Abstract
Continuous rhythmic neuronal oscillations underpin local and regional cortical communication. The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity. Movement preparation and execution are consistently associated with modulations to neuronal oscillation beta (15–30 Hz) power. Cortical beta‐band oscillations were measured using magnetoencephalography (MEG) during preparation for, execution, and completion of a visually cued, lateralized motor task that included movement inhibition trials. Eleven “classical” ALS patients, 9 with the primary lateral sclerosis (PLS) phenotype, and 12 asymptomatic carriers of ALS‐associated gene mutations were compared with age‐similar healthy control groups. Augmented beta desynchronization was observed in both contra‐ and ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with excess beta desynchronization in asymptomatic mutation carriers. Movement completion was followed by a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric lateralization for beta rebound in the PLS group. This may correspond to the particular involvement of interhemispheric fibers of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We conclude that the ALS spectrum is characterized by intensified cortical beta desynchronization followed by delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the development of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strategies. Hum Brain Mapp 38:237–254, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malcolm Proudfoot
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.,Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Gustavo Rohenkohl
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Andrew Quinn
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Giles L Colclough
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Joanne Wuu
- Department of Neurology, Miller School of Medicine, University of Miami, Florida
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Michael Benatar
- Department of Neurology, Miller School of Medicine, University of Miami, Florida
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, United Kingdom
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
40
|
Shiner CT, Tang H, Johnson BW, McNulty PA. Cortical beta oscillations and motor thresholds differ across the spectrum of post-stroke motor impairment, a preliminary MEG and TMS study. Brain Res 2015; 1629:26-37. [DOI: 10.1016/j.brainres.2015.09.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 01/27/2023]
|