1
|
Non-invasive recording of high-frequency signals from the human spinal cord. Neuroimage 2022; 253:119050. [PMID: 35276364 DOI: 10.1016/j.neuroimage.2022.119050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Throughout the somatosensory system, neuronal ensembles generate high-frequency signals in the range of several hundred Hertz in response to sensory input. High-frequency signals have been related to neuronal spiking, and could thus help clarify the functional architecture of sensory processing. Recording high-frequency signals from subcortical regions, however, has been limited to clinical pathology whose treatment allows for invasive recordings. Here, we demonstrate the feasibility to record 200-1200 Hz signals from the human spinal cord non-invasively, and in healthy individuals. Using standard electroencephalography equipment in a cervical electrode montage, we observed high-frequency signals between 200 and 1200 Hz in a time window between 8 and 16 ms after electric median nerve stimulation (n = 15). These signals overlapped in latency, and, partly, in frequency, with signals obtained via invasive, epidural recordings from the spinal cord in a patient with neuropathic pain. Importantly, the observed high-frequency signals were dissociable from classic spinal evoked responses. A spatial filter that optimized the signal-to-noise ratio of high-frequency signals led to submaximal amplitudes of the evoked response, and vice versa, ruling out the possibility that high-frequency signals are merely a spectral representation of the evoked response. Furthermore, we observed spontaneous fluctuations in the amplitude of high-frequency signals over time, in the absence of any concurrent, systematic change to the evoked response. High-frequency, "spike-like" signals from the human spinal cord thus carry information that is complementary to the evoked response. The possibility to assess these signals non-invasively provides a novel window onto the neurophysiology of the human spinal cord, both in a context of top-down control over perception, as well as in pathology.
Collapse
|
2
|
Insola A, Mazzone P, Scarnati E, Restuccia D, Valeriani M. Contribution of different somatosensory afferent input to subcortical somatosensory evoked potentials in humans. Clin Neurophysiol 2021; 132:2357-2364. [PMID: 34454262 DOI: 10.1016/j.clinph.2021.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To investigate the subcortical somatosensory evoked potentials (SEPs) to electrical stimulation of either muscle or cutaneous afferents. METHODS SEPs were recorded in 6 patients suffering from Parkinson's disease (PD) who underwent electrode implantation in the pedunculopontine (PPTg) nucleus area. We compared SEPs recorded from the scalp and from the intracranial electrode contacts to electrical stimuli applied to: 1) median nerve at the wrist, 2) abductor pollicis brevis motor point, and 3) distal phalanx of the thumb. Also the high-frequency oscillations (HFOs) were analysed. RESULTS After median nerve and pure cutaneous (distant phalanx of the thumb) stimulation, a P1-N1 complex was recorded by the intracranial lead, while the scalp electrodes recorded the short-latency far-field responses (P14 and N18). On the contrary, motor point stimulation did not evoke any low-frequency component in the PPTg traces, nor the N18 potential on the scalp. HFOs were recorded to stimulation of all modalities by the PPTg electrode contacts. CONCLUSIONS Stimulus processing within the cuneate nucleus depends on modality, since only the cutaneous input activates the complex intranuclear network possibly generating the scalp N18 potential. SIGNIFICANCE Our results shed light on the subcortical processing of the somatosensory input of different modalities.
Collapse
Affiliation(s)
- Angelo Insola
- Unità Operativa di Neurofisiopatologia, CTO, Rome, Italy
| | - Paolo Mazzone
- Unità Operativa di Neurochirurgia funzionale e stereotassica, CTO, Rome, Italy
| | - Eugenio Scarnati
- Dipartimento di Scienze Cliniche e Biotecnologiche Applicate, Università dell'Aquila, Italy
| | - Domenico Restuccia
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Valeriani
- Divisione di Neurologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy; Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
3
|
Insola A, Mazzone P, Della Marca G, Capozzo A, Vitale F, Scarnati E. Pedunculopontine tegmental Nucleus-evoked prepulse inhibition of the blink reflex in Parkinson's disease. Clin Neurophysiol 2021; 132:2729-2738. [PMID: 34417108 DOI: 10.1016/j.clinph.2021.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effects on the blink reflex (BR) of single stimuli applied to the pedunculopontine tegmental nucleus (PPTg). METHODS The BR was evoked by stimulating the supraorbital nerve (SON) in fifteen patients suffering from idiopathic Parkinson's disease (PD) who had electrodes monolaterally or bilaterally implanted in the PPTg for deep brain stimulation (DBS). Single stimuli were delivered to the PPTg through externalized electrode connection wires 3-4 days following PPTg implantation. RESULTS PPTg stimuli increased the latency and reduced duration, amplitude and area of the R2 component of the BR in comparison to the response recorded in the absence of PPTg stimulation. These effects were independent of the side of SON stimulation and were stable for interstimulus interval (ISI) between PPTg prepulse and SON stimulus from 0 to 110 ms. The PPTg-induced prepulse inhibition of the BR was bilaterally present in the brainstem. The R1 component was unaffected. CONCLUSIONS The prepulse inhibition of the R2 component may be modulated by the PPTg. SIGNIFICANCE These findings suggest that abnormalities of BR occurring in PD may be ascribed to a reduction of basal ganglia-mediated inhibition of brainstem excitability.
Collapse
Affiliation(s)
- Angelo Insola
- Clinical Neurophysiopathology, CTO Andrea Alesini Hospital, ASL Roma 2, Via San Nemesio 21, 00145 Rome, Italy.
| | - Paolo Mazzone
- Functional and Stereotactic Neurosurgery, CTO Andrea Alesini Hospital, ASL Roma 2, Via San Nemesio 21, 00145 Rome, Italy
| | - Giacomo Della Marca
- Institute of Neurology, Catholic University, Largo A.Gemelli 8, 00168 Rome, Italy
| | - Annamaria Capozzo
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | - Flora Vitale
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | - Eugenio Scarnati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| |
Collapse
|
4
|
Bočková M, Rektor I. Impairment of brain functions in Parkinson’s disease reflected by alterations in neural connectivity in EEG studies: A viewpoint. Clin Neurophysiol 2019; 130:239-247. [DOI: 10.1016/j.clinph.2018.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/26/2022]
|
5
|
Reorganization of the somatosensory pathway after subacute incomplete cervical cord injury. NEUROIMAGE-CLINICAL 2019; 21:101674. [PMID: 30642754 PMCID: PMC6412100 DOI: 10.1016/j.nicl.2019.101674] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
Objective The main purpose of the present study was to investigate the possible somatosensory-related brain functional reorganization after traumatic spinal cord injury (SCI). Methods Thirteen patients with subacute incomplete cervical cord injury (ICCI) and thirteen age- and sex-matched healthy controls (HCs) were recruited. Eleven patients and all the HCs underwent both sensory task-related brain functional scanning and whole brain structural scanning on a 3.0 Tesla MRI system, and two patients underwent only structural scanning; the process of structural scanning was completed on thirteen patients, while functional scanning was only applied to eleven patients. We performed sensory task-related functional MRI (fMRI) to investigate the functional changes in the brain. In addition, voxel-based morphometry (VBM) was applied to explore whether any sensory-related brain structural changes occur in the whole brain after SCI. Results Compared with HCs, ICCI patients exhibited decreased activation in the left postcentral gyrus (postCG), the brainstem (midbrain and right pons) and the right cerebellar lobules IV-VI. Moreover, a significant positive association was found between the activation in the left PostCG and the activation in both the brainstem and the right cerebellar lobules IV-VI. Additionally, the decrease in gray matter volume (GMV) was detected in the left superior parietal lobule (SPL). The decrease of white matter volume (WMV) was observed in the right temporal lobe, the right occipital lobe, and the right calcarine gyrus. No structural change in the primary sensory cortex (S1), the secondary somatosensory cortex (S2) or the thalamus was detected. Conclusion These functional and structural findings may demonstrate the existence of an alternative pathway in the impairment of somatosensory function after SCI, which consists of the ipsilateral cerebellum, the brainstem and the contralateral postCG. It provides a new theoretical basis for the mechanism of sensory-related brain alteration in SCI patients and the rehabilitation therapy based on this pathway in the future. We found that sensory-related brain reorganization may not occur in the thalamus in patients with ICCI. We found that brain structural reorganization did not occur in the S1 or the S2 in patients with ICCI. We observed that SCI can cause brain structural reorganization in non-sensory-related areas. We observed that an alternative pathway may exist in the impairment of somatosensory function after SCI.
Collapse
|
6
|
Marano M, Migliore S, Squitieri F, Insola A, Scarnati E, Mazzone P. CM-Pf deep brain stimulation and the long term management of motor and psychiatric symptoms in a case of Tourette syndrome. J Clin Neurosci 2019; 62:269-272. [PMID: 30612913 DOI: 10.1016/j.jocn.2018.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/23/2018] [Indexed: 11/18/2022]
Abstract
Tourette syndrome is a rare neuropsychiatric disorder affecting the cortico-striato-thalamo-cortical system. The disease manifests in childhood with tics and various psychiatric comorbidities. Cases of refractory Tourette syndrome are valuable candidates for functional neurosurgery. The thalamic centromedian-parafascicular complex is an experimental target that shows a promising role in Tourette syndrome deep brain stimulation, due to pathophysiologic evidences. We have shown on a long term follow-up, that thalamic deep brain stimulation, targeted on the centromedian-parafascicular complex, could modulate motor (i.e. tics) symptoms and owns a putative effect on various psychiatric aspects. Non-responding psychiatric symptoms could be due to the aberrant developmental environment of young Tourette patients more than disease itself. Centromedian-parafascicular complex is intriguingly embedded in motor, associative and limbic pathways and should be further investigated in his role for neuromodulation of human movement and behavior.
Collapse
Affiliation(s)
- Massimo Marano
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine, Campus Bio-Medico of Rome University, Via Alvaro del Portillo, 21, 00128 Rome, Italy.
| | - Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 1, 71013 San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini, 1, 71013 San Giovanni Rotondo, Italy
| | | | - Eugenio Scarnati
- Department of Applied Clinical Sciences and Biotechnology, DISCAB, University of l'Aquila, Viale Vetoio Coppito, l'Aquila 67100, Italy
| | - Paolo Mazzone
- Functional Neurosurgery and DBS, Centro Chirurgico Toscano, Via dei Lecci, 22, 52100 Arezzo, Italy
| |
Collapse
|
7
|
Mazzone P, Vitale F, Capozzo A, Viselli F, Scarnati E. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus Improves Static Balance in Parkinson’s Disease. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Insola A, Mazzone P, Valeriani M. Dorsal column nuclei evoked activity recorded from the human pedunculopontine nucleus. Neurophysiol Clin 2016; 46:315-317. [DOI: 10.1016/j.neucli.2016.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 11/26/2022] Open
|
9
|
Hamani C, Lozano AM, Mazzone PAM, Moro E, Hutchison W, Silburn PA, Zrinzo L, Alam M, Goetz L, Pereira E, Rughani A, Thevathasan W, Aziz T, Bloem BR, Brown P, Chabardes S, Coyne T, Foote K, Garcia-Rill E, Hirsch EC, Okun MS, Krauss JK. Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Techniques, Side Effects, and Postoperative Imaging. Stereotact Funct Neurosurg 2016; 94:307-319. [PMID: 27728909 DOI: 10.1159/000449011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023]
Abstract
The pedunculopontine nucleus (PPN) region has received considerable attention in clinical studies as a target for deep brain stimulation (DBS) in Parkinson disease. These studies have yielded variable results with an overall impression of improvement in falls and freezing in many but not all patients treated. We evaluated the available data on the surgical anatomy and terminology of the PPN region in a companion paper. Here we focus on issues concerning surgical technique, imaging, and early side effects of surgery. The aim of this paper was to gain more insight into the reasoning for choosing specific techniques and to discuss shortcomings of available studies. Our data demonstrate the wide range in almost all fields which were investigated. There are a number of important challenges to be resolved, such as identification of the optimal target, the choice of the surgical approach to optimize electrode placement, the impact on the outcome of specific surgical techniques, the reliability of intraoperative confirmation of the target, and methodological differences in postoperative validation of the electrode position. There is considerable variability both within and across groups, the overall experience with PPN DBS is still limited, and there is a lack of controlled trials. Despite these challenges, the procedure seems to provide benefit to selected patients and appears to be relatively safe. One important limitation in comparing studies from different centers and analyzing outcomes is the great variability in targeting and surgical techniques, as shown in our paper. The challenges we identified will be of relevance when designing future studies to better address several controversial issues. We hope that the data we accumulated may facilitate the development of surgical protocols for PPN DBS.
Collapse
Affiliation(s)
- Clement Hamani
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ont., Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Porcaro C, Di Lorenzo G, Seri S, Pierelli F, Tecchio F, Coppola G. Impaired brainstem and thalamic high-frequency oscillatory EEG activity in migraine between attacks. Cephalalgia 2016; 37:915-926. [DOI: 10.1177/0333102416657146] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction We investigated whether interictal thalamic dysfunction in migraine without aura (MO) patients is a primary determinant or the expression of its functional disconnection from proximal or distal areas along the somatosensory pathway. Methods Twenty MO patients and twenty healthy volunteers (HVs) underwent an electroencephalographic (EEG) recording during electrical stimulation of the median nerve at the wrist. We used the functional source separation algorithm to extract four functionally constrained nodes (brainstem, thalamus, primary sensory radial, and primary sensory motor tangential parietal sources) along the somatosensory pathway. Two digital filters (1–400 Hz and 450–750 Hz) were applied in order to extract low- (LFO) and high- frequency (HFO) oscillatory activity from the broadband signal. Results Compared to HVs, patients presented significantly lower brainstem (BS) and thalamic (Th) HFO activation bilaterally. No difference between the two cortical HFO as well as in LFO peak activations between the two groups was seen. The age of onset of the headache was positively correlated with HFO power in the right brainstem and thalamus. Conclusions This study provides evidence for complex dysfunction of brainstem and thalamocortical networks under the control of genetic factors that might act by modulating the severity of migraine phenotype.
Collapse
Affiliation(s)
- Camillo Porcaro
- LET’S-ISTC-CNR, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology, Psychiatric Chair, Department of Systems Medicine, University of Rome ‘Tor Vergata’, Rome, Italy
- Psychiatry and Clinical Psychology Unit, Department of Neurosciences, Fondazione Policlinico ‘Tor Vergata’, Rome, Italy
| | - Stefano Seri
- The Wellcome Trust Laboratory for MEG Studies, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Francesco Pierelli
- Sapienza University of Rome Polo Pontino, Latina and IRCCS Neuromed, Pozzilli (IS), Italy
| | - Franca Tecchio
- LET’S-ISTC-CNR, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy
| | - Gianluca Coppola
- G.B. Bietti Foundation IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Rome, Italy
| |
Collapse
|
11
|
Mazzone P, Vilela Filho O, Viselli F, Insola A, Sposato S, Vitale F, Scarnati E. Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum. J Neural Transm (Vienna) 2016; 123:751-767. [DOI: 10.1007/s00702-016-1518-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 01/28/2016] [Indexed: 12/19/2022]
|
12
|
Insola A, Padua L, Mazzone P, Valeriani M. Low- and high-frequency subcortical SEP amplitude reduction during pure passive movement. Clin Neurophysiol 2015; 126:2366-75. [DOI: 10.1016/j.clinph.2015.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
|
13
|
Forster MT, Hoecker AC, Kang JS, Quick J, Seifert V, Hattingen E, Hilker R, Weise LM. Does Navigated Transcranial Stimulation Increase the Accuracy of Tractography? A Prospective Clinical Trial Based on Intraoperative Motor Evoked Potential Monitoring During Deep Brain Stimulation. Neurosurgery 2015; 76:766-75; discussion 775-6. [DOI: 10.1227/neu.0000000000000715] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractBACKGROUND:Tractography based on diffusion tensor imaging has become a popular tool for delineating white matter tracts for neurosurgical procedures.OBJECTIVE:To explore whether navigated transcranial magnetic stimulation (nTMS) might increase the accuracy of fiber tracking.METHODS:Tractography was performed according to both anatomic delineation of the motor cortex (n = 14) and nTMS results (n = 9). After implantation of the definitive electrode, stimulation via the electrode was performed, defining a stimulation threshold for eliciting motor evoked potentials recorded during deep brain stimulation surgery. Others have shown that of arm and leg muscles. This threshold was correlated with the shortest distance between the active electrode contact and both fiber tracks. Results were evaluated by correlation to motor evoked potential monitoring during deep brain stimulation, a surgical procedure causing hardly any brain shift.RESULTS:Distances to fiber tracks clearly correlated with motor evoked potential thresholds. Tracks based on nTMS had a higher predictive value than tracks based on anatomic motor cortex definition (P < .001 and P = .005, respectively). However, target site, hemisphere, and active electrode contact did not influence this correlation.CONCLUSION:The implementation of tractography based on nTMS increases the accuracy of fiber tracking. Moreover, this combination of methods has the potential to become a supplemental tool for guiding electrode implantation.
Collapse
Affiliation(s)
| | | | - Jun-Suk Kang
- Neurology, Goethe University Hospital, Frankfurt, Germany
| | - Johanna Quick
- Departments of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Volker Seifert
- Departments of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | - Elke Hattingen
- Neuroradiology, Goethe University Hospital, Frankfurt, Germany
| | - Rüdiger Hilker
- Neurology, Goethe University Hospital, Frankfurt, Germany
| | - Lutz Martin Weise
- Departments of Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| |
Collapse
|
14
|
Garcia-Rill E, Hyde J, Kezunovic N, Urbano FJ, Petersen E. The physiology of the pedunculopontine nucleus: implications for deep brain stimulation. J Neural Transm (Vienna) 2015; 122:225-35. [PMID: 24880787 PMCID: PMC4484763 DOI: 10.1007/s00702-014-1243-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/09/2014] [Indexed: 01/07/2023]
Abstract
This brief review resolves a number of persistent conflicts regarding the location and characteristics of the mesencephalic locomotor region, which has in the past been described as not locomotion-specific and is more likely the pedunculopontine nucleus (PPN). The parameters of stimulation used to elicit changes in posture and locomotion we now know are ideally suited to match the intrinsic membrane properties of PPN neurons. The physiology of these cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for the treatment of gait and postural deficits in Parkinson's disease (PD). The discussion explains many of the effects reported following deep brain stimulation (DBS) of the PPN by different groups and provides guidelines for the determination of long-term assessment and effects of PPN DBS. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from DBS for movement disorders. Despite these improvements, there remains a great opportunity for further understanding of the mechanisms through which DBS has its effects and for further development of appropriate technology to effect these treatments. We review the scientific basis for one of the newest targets, the PPN, in the treatment of PD and other movement disorders, and address the needs for further investigation.
Collapse
Affiliation(s)
- E Garcia-Rill
- Department of Neurobiology and Developmental Sciences, Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St, Little Rock, AR, 72205, USA,
| | | | | | | | | |
Collapse
|