1
|
Chen Y, Hu CL, Hong CK, Hsu KL, Kuan FC, Chen WL, Su WR, Chen YC, Hwang IS. Deficits in neuromuscular control of increasing force in patients with chronic lateral epicondylitis. Front Physiol 2023; 14:1178557. [PMID: 37637142 PMCID: PMC10450945 DOI: 10.3389/fphys.2023.1178557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
Objective: This study investigated the neuromuscular control of increasing and releasing force in patients with chronic lateral epicondylitis (CLE). Methods: Fifteen patients with CLE (10 males, 5 females, 46.5 ± 6.3 years) and fifteen healthy participants (9 males, 6 females, 45.3 ± 2.5 years) participated in this study. In addition to power grip and maximal voluntary contraction (MVC) of wrist extension, force fluctuation dynamics and characteristics of inter-spike intervals (ISI) of motor units (MUs) with various recruitment thresholds in the extensor carpi radialis brevis (ECRB) and extensor carpi radialis longus (ECRL) during a designated force-tracking task with a trapezoidal target (0%-75%-0% MVC) were assessed. Results: Besides a smaller MVC of wrist extension, the patients exhibited significantly greater task errors (p = 0.007) and force fluctuations (p = 0.001) during force increment than the healthy counterparts. Nevertheless, no force variables significantly differed between groups during force release (p > 0.05). During force increment, the amplitudes of the motor unit action potential of the ECRB and ECRL muscles of the patients were smaller than those of the heathy counterparts (p < 0.001). The patient group also exhibited a higher percentage of motor units (MU) with lower recruitment threshold (<5% MVC) in the ECRL/ECRB muscles and a lower percentage of MU with higher recruitment threshold (>40% MVC) in the ECRB muscle, compared to the healthy group. During force increment, the patient group exhibited a higher rate of decrease in inter-spike intervals (ISIs) of motor units with lower recruitment thresholds (<10% MVC) in the ECRB and ECRL muscles, compared to the control group (p < 0.005). Conclusion: The patients with CLE exhibited more pronounced impairment in increasing force than in releasing force. This impairment in increasing force is attributed to deficits in tendon structure and degenerative changes in the larger motor units of the wrist extensors. To compensate for the neuromuscular deficits, the rate of progressive increase in discharge rate of the remaining smaller motor units (MUs) is enhanced to generate force. Significance: The deficits in neuromuscular control observed in CLE with degenerative changes cannot be fully explained by the experimental pain model, which predicts pain-related inhibition on low-threshold motor units.
Collapse
Affiliation(s)
- Yueh Chen
- Institute of Allied Health Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Department of Orthopedics, Madou Sin-Lâu Hospital, Tainan, Taiwan
| | - Chia-Ling Hu
- Institute of Allied Health Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chih-Kai Hong
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Lan Hsu
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fa-Chuan Kuan
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Li Chen
- Department of Orthopedics, Madou Sin-Lâu Hospital, Tainan, Taiwan
| | - Wei-Ren Su
- Department of Orthopaedic Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Musculoskeletal Research Center, Innovation Headquarter, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan
| | - Ing-Shiou Hwang
- Institute of Allied Health Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Lulic-Kuryllo T, Greig Inglis J. Sex differences in motor unit behaviour: A review. J Electromyogr Kinesiol 2022; 66:102689. [PMID: 36095969 DOI: 10.1016/j.jelekin.2022.102689] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022] Open
|
3
|
Cleary J, Coombes BK, Hodges P, Tucker K. Motor Unit Recruitment is Altered When Acute Experimental Pain is Induced at a Site Distant to the Contracting Muscle. Neuroscience 2022; 496:141-151. [PMID: 35710065 DOI: 10.1016/j.neuroscience.2022.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Acute pain alters motor unit discharge properties in muscles that are painful or influence loading of painful structures. Less is known about the changes in discharge when pain is induced in distant tissues that are unable or have limited capacity to modify the load of the contracting muscle. We aimed to determine whether acute experimental pain alters quadriceps motor unit discharge when pain is induced in; (i) a muscle that is unlikely to be mechanically influenced by modified quadriceps activity (tibialis anterior: TA), or (ii) the antagonist muscle (biceps femoris: BF). Using a within-subject design, 16 adults performed force-matched isometric knee extension during pain-free control conditions, and trials after painful hypertonic saline injections into TA or BF. Surface and intramuscular electromyography recordings were made. Despite maintained force, discharge rate of quadriceps motor units was lower during Pain than Control conditions for TA and BF trials (both P < 0.001). Redistribution of motor unit activity was observed; some units were recruited in control or pain but not both. As modified quadriceps motor unit discharge has limited/no potential to modify load in the painful tissue to protect the painful part, the findings might support an alternative hypothesis that activity is redistributed to larger motor units.
Collapse
Affiliation(s)
- Jennifer Cleary
- The University of Queensland, School of Biomedical Sciences, Brisbane, Queensland, Australia
| | - Brooke K Coombes
- The University of Queensland, School of Biomedical Sciences, Brisbane, Queensland, Australia; Griffith University, School of Health Sciences and Social Work, Griffith University, Brisbane, Australia
| | - Paul Hodges
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Queensland, Australia
| | - Kylie Tucker
- The University of Queensland, School of Biomedical Sciences, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Kunugi S, Holobar A, Kodera T, Toyoda H, Watanabe K. Motor unit firing patterns on increasing force during force and position tasks. J Neurophysiol 2021; 126:1653-1659. [PMID: 34669517 DOI: 10.1152/jn.00299.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Different neurophysiological strategies are used to perform angle adjustments during motor tasks such as car driving and force-control tasks using a fixed-rigid pedal. However, the difference in motor unit behavior in response to an increasing exerted force between tasks is unknown. This study aimed to investigate the difference in motor unit responsiveness on increasing force between force and position tasks. Twelve healthy participants performed ramp and hold contractions during ankle plantarflexion at 20% and 30% of the maximal voluntary contraction using a rigid pedal (force task) and a free pedal with an inertial load (position task). High-density surface electromyograms were recorded of the medial gastrocnemius muscle and decomposed into individual motor unit firing patterns. Ninety and hundred and nine motor units could be tracked between different target torques in each task. The mean firing rate increased and firing rate variability decreased on 10% maximal voluntary contraction force gain during both force and position tasks. There were no significant differences in these responses between the two tasks. Our results suggest that the motor unit firing rate is similarly regulated between force and position tasks in the medial gastrocnemius muscle with an increase in the exerted force.NEW & NOTEWORTHY Different neurophysiological strategies are used to perform a force control task and angle adjustment task. Our results showed that motor unit firing rate is similarly regulated between the two tasks in the medial gastrocnemius muscle with an increase in the exerted force. Although it is reported that position tasks contribute to early fatigue, it does not seem to be a particular problem for the increase in force.
Collapse
Affiliation(s)
- Shun Kunugi
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, grid.411620.0Chukyo University, Aichi, Japan
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | | | | | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, grid.411620.0Chukyo University, Aichi, Japan
| |
Collapse
|
5
|
Magni NE, McNair PJ, Rice DA. Impairments in grip and pinch force accuracy and steadiness in people with osteoarthritis of the hand: A case-control comparison. Musculoskelet Sci Pract 2021; 55:102432. [PMID: 34333399 DOI: 10.1016/j.msksp.2021.102432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Symptomatic hand osteoarthritis (OA) is severely disabling condition. Limited evidence has focused on force control measures in this population. OBJECTIVES It was the aim of the present study to determine whether force matching accuracy and steadiness are impaired in people with hand OA. In addition, the relationship between force control measures (accuracy and steadiness) and measures of hand function and pain in people with symptomatic hand OA was explored. DESIGN Case-control study. METHOD Sixty-two participants with symptomatic hand OA and 26 healthy pain-free controls undertook an isometric grip and pinch force matching task at 50 % of their maximum voluntary contraction. Average pain hand pain was recorded. In addition, the Disability of the Arm Shoulder and Hand Questionnaire (DASH), and the Functional Index of Hand Osteoarthritis were collected. RESULTS Grip force-matching accuracy and steadiness were significantly impaired in the hand OA group compared to controls (P < 0.05). Pinch force-matching error was greater in people with hand OA (P < 0.05), however, pinch force steadiness was not different between groups. There was a learning effect in people with hand OA, with resolution of force matching impairments with task repetition. A small positive correlation was identified between grip force control and the DASH. No association was found between other measures of force control and self-reported measures of function or pain. CONCLUSIONS People with hand OA presented with greater impairments in measures of submaximal force control. These were correlated with self-reported hand function but not pain. Future studies may wish to examine whether objective measures of functional performance are related to force-matching error and steadiness.
Collapse
Affiliation(s)
- Nicoló Edoardo Magni
- Health and Rehabilitation Research Institute, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland, 0627, New Zealand.
| | - Peter John McNair
- Health and Rehabilitation Research Institute, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland, 0627, New Zealand.
| | - David Andrew Rice
- Health and Rehabilitation Research Institute, Auckland University of Technology, 90 Akoranga Drive, Northcote, Auckland, 0627, New Zealand; Waitemata Pain Service, Department of Anaesthesiology and Perioperative Medicine, North Shore Hospital, Waitemata DHB, 124 Shakespeare Road, Takapuna, Westlake, Auckland, 0622, New Zealand.
| |
Collapse
|
6
|
Sanderson A, Wang SF, Elgueta-Cancino E, Martinez-Valdes E, Sanchis-Sanchez E, Liew B, Falla D. The effect of experimental and clinical musculoskeletal pain on spinal and supraspinal projections to motoneurons and motor unit properties in humans: A systematic review. Eur J Pain 2021; 25:1668-1701. [PMID: 33964047 DOI: 10.1002/ejp.1789] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/30/2020] [Accepted: 04/24/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Numerous studies have examined the influence of pain on spinal reflex excitability, motor unit behaviour and corticospinal excitability. Nevertheless, there are inconsistencies in the conclusions made. This systematic review sought to understand the effect of pain on spinal and supraspinal projections to motoneurons and motor unit properties by examining the influence of clinical or experimental pain on the following three domains: H-reflex, corticospinal excitability and motor unit properties. DATABASES AND DATA TREATMENT MeSH terms and preselected keywords relating to the H-reflex, motor evoked potentials and motor unit decomposition in chronic and experimental pain were used to perform a systematic literature search using Cumulative Index of Nursing and Allied Health Literature (CINAHL), Excerpta Medica dataBASE (EMBASE), Web of Science, Medline, Google Scholar and Scopus databases. Two independent reviewers screened papers for inclusion and assessed the methodological quality using a modified Downs and Black risk of bias tool; a narrative synthesis and three meta-analyses were performed. RESULTS Sixty-one studies were included, and 17 different outcome variables were assessed across the three domains. Both experimental and clinical pain have no major influence on measures of the H-reflex, whereas experimental and clinical pain appeared to have differing effects on corticospinal excitability. Experimental pain consistently reduced motor unit discharge rate, a finding which was not consistent with data obtained from patients. The results indicate that when in tonic pain, induced via experimental pain models, inhibitory effects on motoneuron behaviour were evident. However, in chronic clinical pain populations, more varied responses were evident likely reflecting individual adaptations to chronic symptoms. SIGNIFICANCE This is a comprehensive systematic review and meta-analysis which synthesizes evidence on the influence of pain on spinal and supraspinal projections to motoneurons and motor unit properties considering measures of the H-reflex, corticospinal excitability and motor unit behaviour. The H-reflex is largely not influenced by the presence of either clinical or experimental pain. Whilst inhibitory effects on corticospinal excitability and motor unit behaviour were evident under experimental pain conditions, more variable responses were observed for people with painful musculoskeletal disorders.
Collapse
Affiliation(s)
- Andy Sanderson
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Shuwfen F Wang
- Graduate Institute and School of Physical Therapy, National Taiwan University, Taipei, Taiwan
| | - Edith Elgueta-Cancino
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Enrique Sanchis-Sanchez
- Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Bernard Liew
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,School of Sport, Rehabilitation and Exercise Sciences, Faculty of Physiotherapy, University of Essex, Colchester, UK
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Hodges PW, Butler J, Tucker K, MacDonell CW, Poortvliet P, Schabrun S, Hug F, Garland SJ. Non-uniform Effects of Nociceptive Stimulation to Motoneurones during Experimental Muscle Pain. Neuroscience 2021; 463:45-56. [PMID: 33781800 DOI: 10.1016/j.neuroscience.2021.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Nociceptive stimulation is predicted to uniformly inhibit motoneurone pools of painful muscles and those producing painful movements. Although reduced motoneurone discharge rate during pain provides some evidence, recent data show evidence of increased excitability of some motoneurones. These observations suggest non-uniform effects of nociception on motoneurone excitability. More direct measures are required, but this is difficult to assess as few measures enable in vivo evaluation of motoneurone excitability in humans. We investigated changes in motoneurone excitability during experimental pain using two methods in separate experiments: (i) estimation of the time-course of motoneurone afterhyperpolarization (AHP) from interval death rate analysis of interspike intervals of single motor unit discharge; and (ii) probability of early motoneurone discharge to a descending volley excited using transcranial magnetic stimulation (TMS). Tibialis anterior motor units were recorded with fine-wire electrodes before, during and after painful infusion of 5% hypertonic saline into the muscle. Activation of 17 units (16 participants) could be used for AHP analysis. Data show shortened (n = 11) and lengthened (n = 6) AHP time-course. Increased (n = 6) and decreased (n = 6) probability of early motoneurone discharge were observed in the TMS experiment. These convergent observations suggest non-uniform effects of nociceptive stimulation on motoneurone pools. This does not support the hypothesis that nociceptive input induces uniform inhibition of painful muscle. Instead, interpretation of results implies redistribution of activity between motor units, with possible benefit for unloading painful tissues. This finding supports an interpretation that differs from the generally accepted view in pain physiology regarding adaptation to motor function in pain.
Collapse
Affiliation(s)
- Paul W Hodges
- Uni. of Queensland, School of Health & Rehabilitation Sciences/Biomedical Sciences, Brisbane, Qld 4072 Australia.
| | - Jane Butler
- Neuroscience Research Australia & Uni. of New South Wales, Randwick, Sydney, NSW 2035 Australia
| | - Kylie Tucker
- Uni. of Queensland, School of Health & Rehabilitation Sciences/Biomedical Sciences, Brisbane, Qld 4072 Australia
| | - Christopher W MacDonell
- Spinal Cord Research Centre, Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E0J9 Canada
| | - Peter Poortvliet
- Uni. of Queensland, School of Health & Rehabilitation Sciences/Biomedical Sciences, Brisbane, Qld 4072 Australia
| | - Siobhan Schabrun
- Uni. of Queensland, School of Health & Rehabilitation Sciences/Biomedical Sciences, Brisbane, Qld 4072 Australia; Western Sydney Uni., School of Science & Health, Sydney, NSW 2049 Australia
| | - François Hug
- Uni. of Queensland, School of Health & Rehabilitation Sciences/Biomedical Sciences, Brisbane, Qld 4072 Australia; Uni. of Nantes, Faculty of Sport Sciences, Nantes, France
| | - S Jayne Garland
- Faculty of Health Sciences, Uni. of Western Ontario, London N6A 5B9, Ontario, Canada
| |
Collapse
|
8
|
Gallina A, Abboud J, Blouin JS. A task-relevant experimental pain model to target motor adaptation. J Physiol 2021; 599:2401-2417. [PMID: 33638152 DOI: 10.1113/jp281145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Motor adaptation is thought to be a strategy to avoid pain. Current experimental pain models do not allow for consistent modulation of pain perception depending on movement. We showed that low-frequency sinusoidal stimuli delivered at painful intensity result in minimal habituation of pain perception (over 60 s) and minimal stimulation artefacts on electromyographic signals. When the amplitude of the low-frequency sinusoidal stimuli was modulated based on the vertical force participants applied to the ground with their right leg while standing upright, we demonstrated a strong association between perceived pain and motor adaptation. By enabling task-relevant modulation of perceived pain intensity and the recording electromyographic signals during electrical painful stimulation, our novel pain model will permit direct experimental testing of the relationship between pain and motor adaptation. ABSTRACT Contemporary pain adaptation theories predict that motor adaptation occurs to limit pain. Current experimental pain models, however, do not allow for pain intensity modulation according to one's posture or movements. We developed a task-relevant experimental pain model using low-frequency sinusoidal electrical stimuli applied over the infrapatellar fat pad. In fourteen participants, we compared perceived pain habituation and stimulation-induced artefacts in vastus medialis electromyographic recordings elicited by sinusoidal (4, 10, 20 and 50 Hz) and square electrical waveforms delivered at constant peak stimulation amplitude. Next, we simulated a clinical condition where perceived knee pain intensity is proportional to the load applied on the leg by controlling sinusoidal current amplitude (4 Hz) according to the vertical force the participants applied with their right leg to the ground while standing upright. Pain ratings habituated over a 60 s period for 50 Hz sinusoidal and square waveforms but not for low-frequency sinusoidal stimuli (P < 0.001). EMG filters removed most stimulation artefacts for low-frequency sinusoidal stimuli (4 Hz). While balancing upright, participants' pain ratings were correlated with the force applied by the right leg (R2 = 0.65), demonstrating task-relevant changes in perceived pain intensity. Low-frequency sinusoidal stimuli can induce knee pain of constant intensity for 60 s with minimal EMG artefacts while enabling task-relevant pain modulation when controlling current amplitude. By enabling task-dependent modulation of perceived pain intensity, our novel experimental model replicates key temporal aspects of clinical musculoskeletal pain while allowing quantification of neuromuscular activation during painful electrical stimulation. This approach will enable researchers to test the predicted relationship between movement strategies and pain.
Collapse
Affiliation(s)
- Alessio Gallina
- School of Kinesiology, University of British Columbia, Vancouver, Canada.,Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jacques Abboud
- School of Kinesiology, University of British Columbia, Vancouver, Canada.,Département des Sciences de l'Activité Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Poortvliet PC, Tucker KJ, Finnigan S, Scott D, Hodges PW. Experimental Pain Decreases Corticomuscular Coherence in a Force- But Not a Position-Control Task. THE JOURNAL OF PAIN 2019; 20:192-200. [DOI: 10.1016/j.jpain.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
|
10
|
Poortvliet PC, Tucker KJ, Finnigan S, Scott D, Sowman P, Hodges PW. Cortical activity differs between position- and force-control knee extension tasks. Exp Brain Res 2015; 233:3447-57. [DOI: 10.1007/s00221-015-4404-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/03/2015] [Indexed: 11/24/2022]
|