1
|
Graeme-Drury TJ, Worthen SF, Maden M, Raphael JH, Khan S, Vreugdenhil M, Duarte RV. Contact Heat in Magnetoencephalography: A Systematic Review. Can J Neurol Sci 2024; 51:179-186. [PMID: 36803520 DOI: 10.1017/cjn.2023.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Contact heat is commonly used in experimental research to evoke brain activity, most frequently acquired with electroencephalography (EEG). Although magnetoencephalography (MEG) improves spatial resolution, using some contact heat stimulators with MEG can present methodological challenges. This systematic review assesses studies that utilise contact heat in MEG, their findings and possible directions for further research. METHODS Eight electronic databases were searched for relevant studies, in addition to the selected papers' reference lists, citations and ConnectedPapers maps. Best practice recommendations for systematic reviews were followed. Papers met inclusion criteria if they used MEG to record brain activity in conjunction with contact heat, regardless of stimulator equipment or paradigm. RESULTS Of 646 search results, seven studies met the inclusion criteria. Studies demonstrated effective electromagnetic artefact removal from MEG data, the ability to elicit affective anticipation and differences in deep brain stimulation responders. We identify contact heat stimulus parameters that should be reported in publications to ensure comparisons between data outcomes are consistent. CONCLUSIONS Contact heat is a viable alternative to laser or electrical stimulation in experimental research, and methods exist to successfully mitigate any electromagnetic noise generated by PATHWAY CHEPS equipment - though there is a dearth of literature exploring the post-stimulus time window.
Collapse
Affiliation(s)
| | - Siân F Worthen
- Aston Institute of Health and Neurodevelopment, Birmingham, UK
| | - Michelle Maden
- Liverpool Reviews and Implementation Group; University of Liverpool, Liverpool, UK
| | - Jon H Raphael
- School of Health Sciences, Birmingham City University, Birmingham, UK
| | - Salim Khan
- School of Health Sciences, Birmingham City University, Birmingham, UK
| | | | - Rui V Duarte
- Liverpool Reviews and Implementation Group; University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Jarosiewicz B, Morrell M. The RNS System: brain-responsive neurostimulation for the treatment of epilepsy. Expert Rev Med Devices 2020; 18:129-138. [PMID: 32936673 DOI: 10.1080/17434440.2019.1683445] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Epilepsy affects more than 1% of the US population, and over 30% of adults with epilepsy do not respond to antiseizure medications without life-impacting medication-related side effects. Resection of the seizure focus is not an option for many patients because it would cause unacceptable neurological or cognitive harm. For these patients, neuromodulation has emerged as a nondestructive, effective, and safe alternative. The NeuroPace® RNS® System, the only brain-responsive neurostimulation device, records neural activity from leads placed at one or two seizure foci. When the neurostimulator detects epileptiform activity, as defined for each patient by his or her physician, brief pulses of electrical stimulation are delivered to normalize the activity.Areas covered: This review describes the RNS System, the results of multi-year clinical trials, and the research discoveries enabled by the chronic ambulatory brain data collected by the RNS System.Expert commentary: Brain-responsive neurostimulation could potentially be used to treat any episodic neurological disorder that's accompanied by a neurophysiological biomarker of severity. Combining advanced machine learning approaches with the chronic ambulatory brain data collected by the RNS System could eventually enable automatic fine-tuning of detection and stimulation for each patient, creating a general-purpose neurotechnological platform for precision medicine.
Collapse
Affiliation(s)
| | - Martha Morrell
- NeuroPace, Inc, Mountain View, CA, USA.,Neurology & Neurological Sciences, Stanford University, Stanford Neuroscience Health Center, Palo Alto, CA, USA
| |
Collapse
|
3
|
Jones SE, Lempka SF, Gopalakrishnan R, Baker KB, Beall EB, Bhattacharyya P, Huang X, Lin J, Chen J, Lowe MJ, Malone DA, Machado AG. Functional Magnetic Resonance Imaging Correlates of Ventral Striatal Deep Brain Stimulation for Poststroke Pain. Neuromodulation 2020; 24:259-264. [PMID: 32744789 DOI: 10.1111/ner.13247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Deep brain stimulation (DBS) for pain has largely been implemented in an uncontrolled manner to target the somatosensory component of pain, with research leading to mixed results. We have previously shown that patients with poststroke pain syndrome who were treated with DBS targeting the ventral striatum/anterior limb of the internal capsule (VS/ALIC) demonstrated a significant improvement in measures related to the affective sphere of pain. In this study, we sought to determine how DBS targeting the VS/ALIC modifies brain activation in response to pain. MATERIALS AND METHODS Five patients with poststroke pain syndrome who were blinded to DBS status (ON/OFF) and six age- and sex-matched healthy controls underwent functional magnetic resonance imaging (fMRI) measuring blood oxygen level-dependent activation in a block design. In this design, each participant received heat stimuli to the affected or unaffected wrist area. Statistical comparisons were performed using fMRI z-maps. RESULTS In response to pain, patients in the DBS OFF state showed significant activation (p < 0.001) in the same regions as healthy controls (thalamus, insula, and operculum) and in additional regions (orbitofrontal and superior convexity cortical areas). DBS significantly reduced activation of these additional regions and introduced foci of significant inhibitory activation (p < 0.001) in the hippocampi when painful stimulation was applied to the affected side. CONCLUSIONS These findings suggest that DBS of the VS/ALIC modulates affective neural networks.
Collapse
Affiliation(s)
- Stephen E Jones
- Imaging Sciences, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Raghavan Gopalakrishnan
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Erik B Beall
- Imaging Sciences, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Xuemei Huang
- Imaging Sciences, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jian Lin
- Imaging Sciences, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jacqueline Chen
- Imaging Sciences, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mark J Lowe
- Imaging Sciences, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Donald A Malone
- Department of Psychiatry, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andre G Machado
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Raghuraman N, Wang Y, Schenk LA, Furman AJ, Tricou C, Seminowicz DA, Colloca L. Neural and behavioral changes driven by observationally-induced hypoalgesia. Sci Rep 2019; 9:19760. [PMID: 31874985 PMCID: PMC6930247 DOI: 10.1038/s41598-019-56188-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/03/2019] [Indexed: 01/19/2023] Open
Abstract
Observing successful pain treatment in others can induce anticipatory neural processes that, in turn, relieve pain. Previous studies have suggested that social learning and observation influence placebo hypoalgesia. Here, we used electroencephalography (EEG) to determine the neurophysiological changes associated with pain relief acquired through the observation. Thirty-one participants observed a demonstrator undergo painful heat stimulations paired with a "control" cream and non-painful ones paired with a "treatment" cream, which actually were both Vanicreams. After their observation, the participants then received the same creams and stimulations. We found that the treatment cream led to lower self-reported pain intensity ratings than the control cream. Anticipatory treatment cues elicited smaller P2 in electrodes F1, Fz, FC1, and FCz than the control condition. The P2 component localization indicated a higher current density in the right middle frontal gyrus, a region associated with attentional engagement. In placebo responders, the sensorimotor cortex activity captured in electrodes C3, Cz, and C4 indicated that hypoalgesia was positively correlated with resting state peak alpha frequency (PAF). These results suggest that observationally-induced placebo hypoalgesia may be driven by anticipatory mechanisms that modulate frontal attentional processes. Furthermore, resting state PAF could serve as a predictor of observationally-induced hypoalgesia.
Collapse
Affiliation(s)
- Nandini Raghuraman
- Department of Pain and Translational Symptom Sciences University of Maryland School of Nursing, Baltimore, MD, USA
| | - Yang Wang
- Department of Pain and Translational Symptom Sciences University of Maryland School of Nursing, Baltimore, MD, USA
| | - Lieven A Schenk
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| | - Andrew J Furman
- Department of Neural Pain Sciences University of Maryland School of Dentistry, Baltimore, MD, USA
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, USA
| | - Christina Tricou
- Department of Neural Pain Sciences University of Maryland School of Dentistry, Baltimore, MD, USA
| | - David A Seminowicz
- Department of Neural Pain Sciences University of Maryland School of Dentistry, Baltimore, MD, USA
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, USA
| | - Luana Colloca
- Department of Pain and Translational Symptom Sciences University of Maryland School of Nursing, Baltimore, MD, USA.
- Departments of Anesthesiology and Psychiatry University of Maryland School of Medicine, Baltimore, MD, USA.
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
5
|
Gopalakrishnan R, Burgess RC, Malone DA, Lempka SF, Gale JT, Floden DP, Baker KB, Machado AG. Deep brain stimulation of the ventral striatal area for poststroke pain syndrome: a magnetoencephalography study. J Neurophysiol 2018; 119:2118-2128. [PMID: 29384450 DOI: 10.1152/jn.00830.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Poststroke pain syndrome (PSPS) is an often intractable disorder characterized by hemiparesis associated with unrelenting chronic pain. Although traditional analgesics have largely failed, integrative approaches targeting affective-cognitive spheres have started to show promise. Recently, we demonstrated that deep brain stimulation (DBS) of the ventral striatal area significantly improved the affective sphere of pain in patients with PSPS. In the present study, we examined whether electrophysiological correlates of pain anticipation were modulated by DBS that could serve as signatures of treatment effects. We recorded event-related fields (ERFs) of pain anticipation using magnetoencephalography (MEG) in 10 patients with PSPS preoperatively and postoperatively in DBS OFF and ON states. Simple visual cues evoked anticipation as patients awaited a painful (PS) or nonpainful stimulus (NPS) to the nonaffected or affected extremity. Preoperatively, ERFs showed no difference between PS and NPS anticipation to the affected extremity, possibly due to loss of salience in a network saturated by pain experience. DBS significantly modulated the early N1, consistent with improvements in affective networks involving restoration of salience and discrimination capacity. Additionally, DBS suppressed the posterior P2 (aberrant anticipatory anxiety) while enhancing the anterior N1 (cognitive and emotional regulation) in responders. DBS-induced changes in ERFs could potentially serve as signatures for clinical outcomes. NEW & NOTEWORTHY We examined the electrophysiological correlates of pain affect in poststroke pain patients who underwent deep brain stimulation (DBS) targeting the ventral striatal area under a randomized, controlled trial. DBS significantly modulated early event-related components, particularly N1 and P2, measured with magnetoencephalography during a pain anticipatory task, compared with baseline and the DBS-OFF condition, pointing to possible mechanisms of action. DBS-induced changes in event-related fields could potentially serve as biomarkers for clinical outcomes.
Collapse
Affiliation(s)
- Raghavan Gopalakrishnan
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic , Cleveland, Ohio
| | - Richard C Burgess
- Epilepsy Center, Neurological Institute, Cleveland Clinic , Cleveland, Ohio
| | - Donald A Malone
- Center for Behavioral Health, Neurological Institute, Cleveland Clinic , Cleveland, Ohio
| | - Scott F Lempka
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic , Cleveland, Ohio.,Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center , Cleveland, Ohio
| | - John T Gale
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic , Cleveland, Ohio.,Department of Neuroscience, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Darlene P Floden
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic , Cleveland, Ohio
| | - Kenneth B Baker
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic , Cleveland, Ohio
| | - Andre G Machado
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic , Cleveland, Ohio.,Department of Neurosurgery, Neurological Institute, Cleveland Clinic , Cleveland, Ohio
| |
Collapse
|
6
|
Dread of uncertain pain: An event-related potential study. PLoS One 2017; 12:e0182489. [PMID: 28832607 PMCID: PMC5568389 DOI: 10.1371/journal.pone.0182489] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
Humans experience more stress about uncertain situations than certain situations. However, the neural mechanism underlying the uncertainty of a negative stimulus has not been determined. In the present study, event-related potential was recorded to examine neural responses during the dread of unpredictable pain. We used a cueing paradigm in which predictable cues were always followed by electric shocks, unpredictable cues by electric shocks at a 50/50 ratio and safe cues by no electric shock. Visual analogue scales following electric shocks were presented to quantify subjective anxiety levels. The behavioral results showed that unpredictable cues evoked high-level anxiety compared with predictable cues in both painful and unpainful stimulation conditions. More importantly, the ERPs results revealed that unpredictable cues elicited a larger P200 at parietal sites than predictable cues. In addition, unpredictable cues evoked larger P200 compared with safe cues at frontal electrodes and compared with predictable cues at parietal electrodes. In addition, larger P3b and LPP were observed during perception of safe cues compared with predictable cues at frontal and central electrodes. The similar P3b effect was also revealed in the left sites. The present study underlined that the uncertain dread of pain was associated with threat appraisal process in pain system. These findings on early event-related potentials were significant for a neural marker and development of therapeutic interventions.
Collapse
|
7
|
Benoit B, Martin-Misener R, Newman A, Latimer M, Campbell-Yeo M. Neurophysiological assessment of acute pain in infants: a scoping review of research methods. Acta Paediatr 2017; 106:1053-1066. [PMID: 28326623 DOI: 10.1111/apa.13839] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
A systematic scoping search to describe the neurophysiological methods used in infant acute pain assessment research was conducted. Of the 2411 abstracts screened, 19 articles were retained. Nine studies utilised near-infrared spectroscopy (NIRS), two utilised functional magnetic resonance imaging (fMRI), and eight utilised electroencephalography (EEG). There was methodological variability in studies utilising NIRS, whereas EEG and fMRI studies reported consistent methods. Of the eight EEG studies, six identified a nociceptive-specific event-related potential. CONCLUSION While more methodologically rigorous studies are needed, ERPs appear to hold some promise as indicators of infant nociception during clinical procedures to supplement existing measures.
Collapse
Affiliation(s)
- B Benoit
- School of Nursing, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Pediatric Pain Research, IWK Health Centre, Halifax, NS, Canada
- Maternal Newborn Program, IWK Health Centre, Halifax, NS, Canada
| | - R Martin-Misener
- School of Nursing, Dalhousie University, Halifax, Nova Scotia, Canada
| | - A Newman
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, NS, Canada
| | - M Latimer
- School of Nursing, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Pediatric Pain Research, IWK Health Centre, Halifax, NS, Canada
- Department of Pain, Anesthesia and Perioperative Medicine, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - M Campbell-Yeo
- School of Nursing, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Pediatric Pain Research, IWK Health Centre, Halifax, NS, Canada
- Maternal Newborn Program, IWK Health Centre, Halifax, NS, Canada
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
8
|
Gopalakrishnan R, Burgess RC, Lempka SF, Gale JT, Floden DP, Machado AG. Pain anticipatory phenomena in patients with central poststroke pain: a magnetoencephalography study. J Neurophysiol 2016; 116:1387-95. [PMID: 27358316 DOI: 10.1152/jn.00215.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022] Open
Abstract
Central poststroke pain (CPSP) is characterized by hemianesthesia associated with unrelenting chronic pain. The final pain experience stems from interactions between sensory, affective, and cognitive components of chronic pain. Hence, managing CPSP will require integrated approaches aimed not only at the sensory but also the affective-cognitive spheres. A better understanding of the brain's processing of pain anticipation is critical for the development of novel therapeutic approaches that target affective-cognitive networks and alleviate pain-related disability. We used magnetoencephalography (MEG) to characterize the neural substrates of pain anticipation in patients suffering from intractable CPSP. Simple visual cues evoked anticipation while patients awaited impending painful (PS), nonpainful (NPS), or no stimulus (NOS) to their nonaffected and affected extremities. MEG responses were studied at gradiometer level using event-related fields analysis and time-frequency oscillatory analysis upon source localization. On the nonaffected side, significantly greater responses were recorded during PS. PS (vs. NPS and NOS) exhibited significant parietal and frontal cortical activations in the beta and gamma bands, respectively, whereas NPS (vs. NOS) displayed greater activation in the orbitofrontal cortex. On the affected extremity, PS (vs. NPS) did not show significantly greater responses. These data suggest that anticipatory phenomena can modulate neural activity when painful stimuli are applied to the nonaffected extremity but not the affected extremity in CPSP patients. This dichotomy may stem from the chronic effects of pain on neural networks leading to habituation or saturation. Future clinically effective therapies will likely be associated with partial normalization of the neurophysiological correlates of pain anticipation.
Collapse
Affiliation(s)
- Raghavan Gopalakrishnan
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Richard C Burgess
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Scott F Lempka
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio; Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; and
| | - John T Gale
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio; Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Darlene P Floden
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Andre G Machado
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, Ohio; Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|