Kwon H, Rutkove SB, Sanchez B. Recording characteristics of electrical impedance myography needle electrodes.
Physiol Meas 2017;
38:1748-1765. [PMID:
28721951 DOI:
10.1088/1361-6579/aa80ac]
[Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE
Neurologists and physiatrists need improved tools for the evaluation of skeletal muscle condition. Here we evaluate needle electrical impedance myography (EIM), a new minimally invasive approach to determine muscle status that could ultimately become a bedside tool for the assessment of neuromuscular disorders.
APPROACH
We design and study the recording characteristics of tetrapolar EIM needle electrodes combining theory and finite-element model simulations. We then use these results to build and pilot in vivo an EIM needle electrode in the rat gastrocnemius muscle ([Formula: see text]). The dielectric properties of muscle are reported (mean ± standard deviation).
RESULTS
The numerical simulations show that the contribution of subcutaneous fat and muscle tissues to needle EIM data is <3% and >97%, respectively, and the sensed volume is [Formula: see text] cm3. Apparent resistivity [Formula: see text] [Formula: see text] cm and relative permittivity [Formula: see text] (dimensionless) measured at 10 kHz are in good agreement with in vivo dielectric properties reported in the literature.
SIGNIFICANCE
The results presented show the feasibility of measuring muscle impedivity in vivo using a needle electrode from 10 kHz to 1 MHz. The development of needle EIM technology can open up a new field of study in electrodiagnostic medicine, with potential applications to both disease diagnosis and biomarker assessment of therapy.
Collapse