1
|
Weiß L, Roth F, Rea-Ludmann P, Rosenstock T, Picht T, Vajkoczy P, Zdunczyk A. NTMS based tractography and segmental diffusion analysis in patients with brainstem gliomas: Risk stratification and clinical potential. BRAIN & SPINE 2024; 4:102753. [PMID: 38510608 PMCID: PMC10951762 DOI: 10.1016/j.bas.2024.102753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 03/22/2024]
Abstract
Introduction Surgery on the brainstem level is associated with a high-risk of postoperative morbidity. Recently, we have introduced the combination of navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging (DTI) tractography to define functionally relevant motor fibers tracts on the brainstem level to support operative planning and risk stratification in brainstem cavernomas. Research question Evaluate this method and assess it's clinical impact for the surgery of brainstem gliomas. Material and methods Patients with brainstem gliomas were examined preoperatively with motor nTMS and DTI tractography. A fractional anisotropy (FA) value of 75% of the individual FA threshold (FAT) was used to track descending corticospinal (CST) and -bulbar tracts (CBT). The distance between the tumor and the somatotopic tracts (hand, leg, face) was measured and diffusion parameters were correlated to the patients' outcome. Results 12 patients were enrolled in this study, of which 6 underwent surgical resection, 5 received a stereotactic biopsy and 1 patient received conservative treatment. In all patients nTMS mapping and somatotopic tractography were performed successfully. Low FA values correlated with clinical symptoms revealing tract alteration by the tumor (p = 0.049). A tumor-tract distance (TTD) above 2 mm was the critical limit to achieve a safe complete tumor resection. Discussion and conclusion nTMS based DTI tractography combined with local diffusion analysis is a valuable tool for preoperative visualization and functional assessment of relevant motor fiber tracts, improving planning of safe entry corridors and perioperative risk stratification in brainstem gliomas tumors. This technique allows for customized treatment strategy to maximize patients' safety.
Collapse
Affiliation(s)
- Lion Weiß
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
| | - Fabia Roth
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
| | - Pierre Rea-Ludmann
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
| | - Tizian Rosenstock
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Germany
| | - Thomas Picht
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
- Cluster of Excellence Matters of Activity. Image Space Material, Humboldt Universität zu Berlin, Germany
| | - Peter Vajkoczy
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
| | - Anna Zdunczyk
- Charité – Universitätsmedizin Berlin, Department of Neurosurgery, Germany
| |
Collapse
|
2
|
Rabadán AT. Utilización de las zonas de entrada seguras para el abordaje de lesiones intrínsecas de tronco cerebral en adultos. Surg Neurol Int 2020. [DOI: 10.25259/sni_598_2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introducción:
Las “zonas de entrada seguras” (ZES) al tronco cerebral describen accesos destinados a preservar estructuras críticas. La mayoría de las publicaciones son descripciones anatómicas; existiendo pocas sobre su aplicación. En este escenario, nuestro trabajo puede sumar información para el manejo quirúrgico en casos seleccionados.
Material y Métodos:
De una serie de 13 pacientes, se presentan 9 que no eran candidatos para biopsia estereotáctica y recibieron microcirugía. Las localizaciones fueron: mesencéfalo (3), tectum (1), protuberancia (2) y bulbo (3). Cinco pacientes tuvieron KPS ≥70; y 4, KPS <70. Diferentes ZES fueron utilizadas según la topografía lesional. El grado de resección se basó en la biopsia intraoperatoria y el monitoreo neurofisiológico.
Resultados:
Los hallazgos patológicos fueron: astrocitoma pilocítico (1), glioma de bajo grado (1), hemangioblastoma (1), subependimoma (1), disgerminoma (1), y lesiones pseudotumorales (3 cavernomas y 1 pseudotumor inflamatorio). El grado de resección fue completo (4), subtotal (3), y biopsia fue considerada suficiente en (2). Un paciente falleció en el postoperatorio.
Discusión:
Las lesiones del tronco cerebral son infrecuentes en adultos. Las controversias surgen cuando se balancean los beneficios de obtener diagnóstico histopatológico y los riesgos potenciales de procedimientos invasivos. La amplia variedad de hallazgos en esta localización exige una precisa definición histopatológica, que no solamente determinará la terapéutica adecuada, sino que advierte sobre las consecuencias potencialmente catastróficas de los tratamientos empíricos. Las ZES ofrecen un acceso posible y seguro, aunque es más realista considerarlas como áreas para abordar lesiones intrínsecas con baja morbilidad más que como zonas completamente seguras.
Collapse
|
4
|
Costa P, Gaglini PP, Tavormina P, Ricci F, Peretta P. A method for intraoperative recording of the laryngeal adductor reflex during lower brainstem surgery in children. Clin Neurophysiol 2018; 129:2497-2498. [DOI: 10.1016/j.clinph.2018.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 11/29/2022]
|
5
|
Sinclair CF, Téllez MJ, Ulkatan S. Noninvasive, tube-based, continuous vagal nerve monitoring using the laryngeal adductor reflex: Feasibility study of 134 nerves at risk. Head Neck 2018; 40:2498-2506. [PMID: 30120890 DOI: 10.1002/hed.25377] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/27/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Continuous vagal intraoperative neuromonitoring (IONM) currently requires placement of a vagal nerve electrode. Herein, we present data from 100 patients (134 nerves-at-risk) monitored continuously during neck endocrine surgeries using a noninvasive, new methodology that solely utilizes endotracheal tube electrodes to simultaneously stimulate laryngeal mucosa and record a laryngeal adductor reflex continuous IONM (LAR-C-IONM) response. METHODS The laryngeal adductor reflex (LAR) was elicited by electrical laryngeal mucosal stimulation on the side contralateral to the operative field using endotracheal tube electrodes. All patients completed preoperative and postoperative laryngeal and voice examinations. RESULTS One hundred patients (134 nerves-at-risk) were included. Significantly more nerves-at-risk with an LAR opening to closing amplitude decrement >60% or with absolute closing amplitude <100 μV had postoperative vocal fold paralysis (P < .001). The LAR-C-IONM was highly sensitive to recurrent laryngeal nerve (RLN) stretch or compression. CONCLUSION The LAR-C-IONM is a promising new way to perform continuous vagal monitoring that requires no equipment other than an electromyography (EMG) endotracheal tube and is undergoing further, large-scale evaluation.
Collapse
Affiliation(s)
- Catherine F Sinclair
- Department of Otolaryngology - Head and Neck Surgery, Mount Sinai West Hospital, New York, New York
| | - Maria J Téllez
- Department of Intraoperative Neurophysiology, Mount Sinai West Hospital, New York, New York
| | - Sedat Ulkatan
- Department of Intraoperative Neurophysiology, Mount Sinai West Hospital, New York, New York
| |
Collapse
|
6
|
Li Z, Wang M, Zhang L, Fan X, Tao X, Qi L, Ling M, Xiao X, Wu Y, Guo D, Qiao H. Neuronavigation-Guided Corticospinal Tract Mapping in Brainstem Tumor Surgery: Better Preservation of Motor Function. World Neurosurg 2018; 116:e291-e297. [PMID: 29733992 DOI: 10.1016/j.wneu.2018.04.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To evaluate a new technique in brainstem surgery, neuronavigation (NN)-guided corticospinal tract (CST) mapping, in a retrospective study of patients undergoing brainstem tumor surgery. METHODS We studied 40 patients with a brainstem tumor who were enrolled in this study. Patients whose worst preoperative muscle strength of the 4 limbs was greater than 3 levels from normal on the Lovett scale were divided into 2 groups: a treatment group of 21 patients who underwent NN-guided CST mapping and routine intraoperative neurophysiology monitoring (IONM) and a control group of 19 patients who underwent routine NN and IONM. Preoperative muscle strength and postoperative (day 90 postsurgery) muscle strength were assessed and compared between the 2 groups. RESULTS In the NN-guided CST mapping group, 3 patients (14.3%) had a decrease in muscle strength by 1 level postoperatively, and no patient experienced a decrease of >1 level. In the control group, 4 patients (21.1%) had a 1-level decrease in muscle strength, and 5 (26.3%) had a decrease of >1 level. Patients in the NN-guided CST mapping group had significantly better surgical outcomes compared with those in the control group (P = 0.018, Fisher exact test). CONCLUSIONS Brainstem tumor resection using NN-guided CST mapping achieved better preservation of motor function compared with routine NN and IONM. NN-guided CST mapping not only decreased the difficulty of the surgery, but also significantly improved the efficiency of surgery.
Collapse
Affiliation(s)
- Zhibao Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neuroelectrophysiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingran Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neuroelectrophysiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neuroelectrophysiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaorong Tao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neuroelectrophysiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Qi
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neuroelectrophysiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Miao Ling
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neuroelectrophysiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuliang Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongze Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neuroelectrophysiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui Qiao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neuroelectrophysiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|