1
|
Liu R, Ma R, Zhou X, Wang X, Wu J, Chu F, Wang M, Liu X, Wang Y, Zhu K, Zhang S, Yin T, Liu Z. Cortical Plasticity Induced by Pairing Primary Motor Cortex Transcranial Magnetic Stimulation With Subthalamic Nucleus Magneto-Acoustic Coupling Stimulation. IEEE Trans Neural Syst Rehabil Eng 2025; 33:1751-1762. [PMID: 40299729 DOI: 10.1109/tnsre.2025.3565258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Paired cortical and deep stimulation has the potential to induce enhanced cortical plasticity. Ideally, such stimulation should be noninvasive and precisely controlled. A novel paired stimulation method, combining transcranial magnetic stimulation (TMS) with transcranial magneto-acoustic coupled stimulation (TMAS), named TMS-TMAS, was proposed to achieve such stimulations. Although the primary motor cortex (M1) is stimulated using TMS, the pulsed magnetic field is coupled with a focused ultrasound field to achieve TMAS-based focused electrical stimulation of the subthalamic nucleus (STN) via the magneto-acoustic coupling effect. Cortical plasticity is induced by precisely controlling the timing of magnetic pulse and ultrasound emissions based on spike timing-dependent plasticity (STDP). The experimental system achieved cortical-focused magnetic stimulation with a transverse resolution of 4.3 mm, a longitudinal resolution of 2.8 mm, and a magnetic field intensity of 1.6 T in the M1 region. Additionally, deep-focused electrical stimulation with a transverse resolution of 1.6 mm, a longitudinal resolution of 9.9 mm, and a coupled electric field intensity of 280 mV/m in the STN region was realized. In vivo animal experiments demonstrated that TMS-TMAS enhanced the amplitude of motor evoked potential (MEP) and reduced response latency. Simulation and experimental results confirmed that TMS-TMAS achieves high spatial resolution, noninvasive paired stimulation of the cortex and deep nuclei, and induces enhanced cortical plasticity when the stimulation sequence satisfies the STDP criteria. This method provides a promising approach for noninvasive paired stimulation and is expected to advance brain science research and the rehabilitation of neuropsychiatric disorders involving deep brain structures.
Collapse
|
2
|
Yu X, Jian Z, Dang L, Zhang X, He P, Xiong X, Feng Y, Rehman AU. Chemogenetic modulation in stroke recovery: A promising stroke therapy approach. Brain Stimul 2025; 18:1028-1036. [PMID: 40340020 DOI: 10.1016/j.brs.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025] Open
Abstract
Stroke remains a leading cause of long-term disability and mortality worldwide, necessitating novel therapeutic strategies to enhance recovery. Traditional rehabilitation approaches, including physical therapy and pharmacological interventions, often provide limited functional improvement. Neuromodulation has emerged as a promising strategy to promote post-stroke recovery by enhancing neuroplasticity and functional reorganization. Among various neuromodulatory techniques, chemogenetics, particularly Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), offers precise, cell-type-specific, and temporally controlled modulation of neuronal and glial activity. This review explores the mechanisms and therapeutic potential of chemogenetic modulation in stroke recovery. Preclinical studies have demonstrated that activation of excitatory DREADDs (hM3Dq) in neurons located within the peri-infarct area or contralateral M1 has been shown to enhance neuroplasticity, facilitate axonal sprouting, and lead to improved behavioral recovery following stroke. Conversely, stimulation of inhibitory DREADDs (hM4Di) suppresses stroke-induced excitotoxicity, mitigates peri-infarct spreading depolarizations (PIDs), and modulates neuroinflammatory responses. By targeting specific neuronal and glial populations, chemogenetics enables phase-specific interventions-early inhibition to minimize damage during the acute phase and late excitation to promote plasticity during the recovery phase. Despite its advantages over traditional neuromodulation techniques, such as optogenetics and deep brain stimulation, several challenges remain before chemogenetics can be translated into clinical applications. These include optimizing viral vector delivery, improving ligand specificity, minimizing off-target effects, and ensuring long-term receptor stability. Furthermore, integrating chemogenetics with existing stroke rehabilitation strategies, including brain-computer interfaces and physical therapy, may enhance functional recovery by facilitating adaptive neuroplasticity. Future research should focus on refining chemogenetic tools to enable clinical application. By offering a highly selective, reversible, and minimally invasive approach, chemogenetics holds great potential for revolutionizing post-stroke therapy and advancing personalized neuromodulation strategies.
Collapse
Affiliation(s)
- Xinyuan Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Lihong Dang
- Duke University Medical Center, Duke University, United States
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Yanping Feng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, China.
| | - Ata Ur Rehman
- Duke University Medical Center, Duke University, United States.
| |
Collapse
|
3
|
Ho JC, Grigsby EM, Damiani A, Liang L, Balaguer JM, Kallakuri S, Tang LW, Barrios-Martinez J, Karapetyan V, Fields D, Gerszten PC, Hitchens TK, Constantine T, Adams GM, Crammond DJ, Capogrosso M, Gonzalez-Martinez JA, Pirondini E. Potentiation of cortico-spinal output via targeted electrical stimulation of the motor thalamus. Nat Commun 2024; 15:8461. [PMID: 39353911 PMCID: PMC11445460 DOI: 10.1038/s41467-024-52477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Cerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for therapies aimed at improving volitional muscle activation. Here we hypothesize that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby immediately potentiating motor output. To test this hypothesis, we identify optimal thalamic targets and stimulation parameters that enhance upper-limb motor-evoked potentials and grip forces in anesthetized monkeys. This potentiation persists after white matter lesions. We replicate these results in humans during intra-operative testing. We then design a stimulation protocol that immediately improves strength and force control in a patient with a chronic white matter lesion. Our results show that electrical stimulation targeting surviving neural pathways can improve motor control after white matter lesions.
Collapse
Affiliation(s)
- Jonathan C Ho
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erinn M Grigsby
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arianna Damiani
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Josep-Maria Balaguer
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Sridula Kallakuri
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lilly W Tang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Vahagn Karapetyan
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Daryl Fields
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Theodora Constantine
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory M Adams
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donald J Crammond
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jorge A Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
- University of Pittsburgh Clinical and Translational Science Institute (CTSI), Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Pirondini E, Grigsby E, Tang L, Damiani A, Ho J, Montanaro I, Nouduri S, Trant S, Constantine T, Adams G, Franzese K, Mahon B, Fiez J, Crammond D, Stipancic K, Gonzalez-Martinez J. Targeted deep brain stimulation of the motor thalamus improves speech and swallowing motor functions after cerebral lesions. RESEARCH SQUARE 2024:rs.3.rs-5085807. [PMID: 39399682 PMCID: PMC11469375 DOI: 10.21203/rs.3.rs-5085807/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Speech and swallowing are complex motor acts that depend upon the integrity of input neural signals from motor cortical areas to control muscles of the head and neck. Lesions damaging these neural pathways result in weakness of key muscles causing dysarthria and dysphagia, leading to profound social isolation and risk of aspiration and suffocation. Here we show that Deep Brain Stimulation (DBS) of the motor thalamus improved speech and swallowing functions in two participants with dysarthria and dysphagia. First, we proved that DBS increased excitation of the face motor cortex, augmenting motor evoked potentials, and range and speed of motion of orofacial articulators in n = 10 volunteers with intact neural pathways. Then, we demonstrated that this potentiation led to immediate improvement in swallowing functions in a patient with moderate dysphagia and profound dysarthria as a consequence of a traumatic brain lesion. In this subject and in another with mild dysarthria, we showed that DBS immediately ameliorated impairments of respiratory, phonatory, resonatory, and articulatory control thus resulting in a clinically significant improvement in speech intelligibility. Our data provide first-in-human evidence that DBS can be used to treat dysphagia and dysarthria in people with cerebral lesions.
Collapse
|
5
|
Wilhelm E, Derosiere G, Quoilin C, Cakiroglu I, Paço S, Raftopoulos C, Nuttin B, Duque J. Subthalamic DBS does not restore deficits in corticospinal suppression during movement preparation in Parkinson's disease. Clin Neurophysiol 2024; 165:107-116. [PMID: 38996612 DOI: 10.1016/j.clinph.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVE Parkinson's disease (PD) patients exhibit changes in mechanisms underlying movement preparation, particularly the suppression of corticospinal excitability - termed "preparatory suppression" - which is thought to facilitate movement execution in healthy individuals. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) being an attractive treatment for advanced PD, we aimed to study the potential contribution of this nucleus to PD-related changes in such corticospinal dynamics. METHODS On two consecutive days, we applied single-pulse transcranial magnetic stimulation to the primary motor cortex of 20 advanced PD patients treated with bilateral STN-DBS (ON vs. OFF), as well as 20 healthy control subjects. Motor-evoked potentials (MEPs) were elicited at rest or during movement preparation in an instructed-delay choice reaction time task including left- or right-hand responses. Preparatory suppression was assessed by expressing MEPs during movement preparation relative to rest. RESULTS PD patients exhibited a deficit in preparatory suppression when it was probed on the responding hand side, particularly when this corresponded to their most-affected hand, regardless of their STN-DBS status. CONCLUSIONS Advanced PD patients displayed a reduction in preparatory suppression which was not restored by STN-DBS. SIGNIFICANCE The current findings confirm that PD patients lack preparatory suppression, as previously reported. Yet, the fact that this deficit was not responsive to STN-DBS calls for future studies on the neural source of this regulatory mechanism during movement preparation.
Collapse
Affiliation(s)
- Emmanuelle Wilhelm
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium; Department of Adult Neurology, Saint-Luc University Hospital, 1200 Brussels, Belgium.
| | - Gerard Derosiere
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Caroline Quoilin
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Inci Cakiroglu
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Susana Paço
- NOVA IMS, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal
| | | | - Bart Nuttin
- Department of Neurosurgery, UZ Leuven, 3000 Leuven, Belgium
| | - Julie Duque
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| |
Collapse
|
6
|
Birreci D, De Riggi M, Costa D, Angelini L, Cannavacciuolo A, Passaretti M, Paparella G, Guerra A, Bologna M. The Role of Non-Invasive Brain Modulation in Identifying Disease Biomarkers for Diagnostic and Therapeutic Purposes in Parkinsonism. Brain Sci 2024; 14:695. [PMID: 39061435 PMCID: PMC11274666 DOI: 10.3390/brainsci14070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past three decades, substantial advancements have occurred in non-invasive brain stimulation (NIBS). These developments encompass various non-invasive techniques aimed at modulating brain function. Among the most widely utilized methods today are transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES), which include direct- or alternating-current transcranial stimulation (tDCS/tACS). In addition to these established techniques, newer modalities have emerged, broadening the scope of non-invasive neuromodulation approaches available for research and clinical applications in movement disorders, particularly for Parkinson's disease (PD) and, to a lesser extent, atypical Parkinsonism (AP). All NIBS techniques offer the opportunity to explore a wide range of neurophysiological mechanisms and exert influence over distinct brain regions implicated in the pathophysiology of Parkinsonism. This paper's first aim is to provide a brief overview of the historical background and underlying physiological principles of primary NIBS techniques, focusing on their translational relevance. It aims to shed light on the potential identification of biomarkers for diagnostic and therapeutic purposes, by summarising available experimental data on individuals with Parkinsonism. To date, despite promising findings indicating the potential utility of NIBS techniques in Parkinsonism, their integration into clinical routine for diagnostic or therapeutic protocols remains a subject of ongoing investigation and scientific debate. In this context, this paper addresses current unsolved issues and methodological challenges concerning the use of NIBS, focusing on the importance of future research endeavours for maximizing the efficacy and relevance of NIBS strategies for individuals with Parkinsonism.
Collapse
Affiliation(s)
- Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
| | - Davide Costa
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | - Luca Angelini
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | | | - Massimiliano Passaretti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, 35121 Padua, Italy;
- Padova Neuroscience Centre (PNC), University of Padua, 35121 Padua, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università, 30, 00185 Rome, Italy; (D.B.); (M.D.R.); (M.P.); (G.P.)
- IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy; (D.C.); (L.A.); (A.C.)
| |
Collapse
|
7
|
Chen Y, Xu Z, Liu T, Li D, Tian X, Zheng R, Ma Y, Zheng S, Xing J, Wang W, Sun F. Application of deep brain stimulation and transcranial magnetic stimulation in stroke neurorestoration: A review. JOURNAL OF NEURORESTORATOLOGY 2024; 12:100120. [DOI: 10.1016/j.jnrt.2024.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
8
|
Wang X, Chen M, Shen Y, Li Y, Li S, Xu Y, Liu Y, Su F, Xin T. A longitudinal electrophysiological and behavior dataset for PD rat in response to deep brain stimulation. Sci Data 2024; 11:500. [PMID: 38750096 PMCID: PMC11096386 DOI: 10.1038/s41597-024-03356-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Here we presented an electrophysiological dataset collected from layer V of the primary motor cortex (M1) and the corresponding behavior dataset from normal and hemi-parkinson rats over 5 consecutive weeks. The electrophysiological dataset was constituted by the raw wideband signal, neuronal spikes, and local field potential (LFP) signal. The open-field test was done and recorded to evaluate the behavior variation of rats among the entire experimental cycle. We conducted technical validation of this dataset through sorting the spike data to form action potential waveforms and analyzing the spectral power of LFP data, then based on these findings a closed-loop DBS protocol was developed by the oscillation activity response of M1 LFP signal. Additionally, this protocol was applied to the hemi-parkinson rat for five consecutive days while simultaneously recording the electrophysiological data. This dataset is currently the only publicly available dataset that includes longitudinal closed-loop DBS recordings, which can be utilized to investigate variations of neuronal activity within the M1 following long-term closed-loop DBS, and explore additional reliable biomarkers.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Min Chen
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yin Shen
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yuming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Shengjie Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Yuanhao Xu
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, 999077, China
| | - Yu Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Su
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China.
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
9
|
Ho JC, Grigsby EM, Damiani A, Liang L, Balaguer JM, Kallakuri S, Barrios-Martinez J, Karapetyan V, Fields D, Gerszten PC, Kevin Hitchens T, Constantine T, Adams GM, Crammond DJ, Capogrosso M, Gonzalez-Martinez JA, Pirondini E. POTENTIATION OF CORTICO-SPINAL OUTPUT VIA TARGETED ELECTRICAL STIMULATION OF THE MOTOR THALAMUS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.08.23286720. [PMID: 36945514 PMCID: PMC10029067 DOI: 10.1101/2023.03.08.23286720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cerebral white matter lesions prevent cortico-spinal descending inputs from effectively activating spinal motoneurons, leading to loss of motor control. However, in most cases, the damage to cortico-spinal axons is incomplete offering a potential target for new therapies aimed at improving volitional muscle activation. Here we hypothesized that, by engaging direct excitatory connections to cortico-spinal motoneurons, stimulation of the motor thalamus could facilitate activation of surviving cortico-spinal fibers thereby potentiating motor output. To test this hypothesis, we identified optimal thalamic targets and stimulation parameters that enhanced upper-limb motor evoked potentials and grip forces in anesthetized monkeys. This potentiation persisted after white matter lesions. We replicated these results in humans during intra-operative testing. We then designed a stimulation protocol that immediately improved voluntary grip force control in a patient with a chronic white matter lesion. Our results show that electrical stimulation targeting surviving neural pathways can improve motor control after white matter lesions.
Collapse
Affiliation(s)
- Jonathan C. Ho
- School of Medicine, University of Pittsburgh, 3550 Terrace St, Pittsburgh, PA, USA 15213
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
| | - Erinn M. Grigsby
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Avenue, Suite 910, Pittsburgh, PA, USA, 15213
| | - Arianna Damiani
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, 151 Benedum Hall, Pittsburgh, PA, USA, 15261
- Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, USA, 15213
| | - Lucy Liang
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, 151 Benedum Hall, Pittsburgh, PA, USA, 15261
- Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, USA, 15213
| | - Josep-Maria Balaguer
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, 151 Benedum Hall, Pittsburgh, PA, USA, 15261
- Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, USA, 15213
| | - Sridula Kallakuri
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA, USA, 15260
| | - Jessica Barrios-Martinez
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - Vahagn Karapetyan
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, 151 Benedum Hall, Pittsburgh, PA, USA, 15261
- Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, USA, 15213
| | - Daryl Fields
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - Peter C. Gerszten
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - T. Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop Street, Room E1440, Pittsburgh, PA, USA, 15213
| | - Theodora Constantine
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - Gregory M. Adams
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - Donald J. Crammond
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - Marco Capogrosso
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, 151 Benedum Hall, Pittsburgh, PA, USA, 15261
- Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, USA, 15213
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
| | - Jorge A. Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop Street, Room E1440, Pittsburgh, PA, USA, 15213
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA, USA, 15213
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, 3471 Fifth Avenue, Suite 910, Pittsburgh, PA, USA, 15213
- Department of Bioengineering, University of Pittsburgh, 151 Benedum Hall, Pittsburgh, PA, USA, 15261
- Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, USA, 15213
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, suite b-400, Pittsburgh, PA, USA, 15213
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop Street, Room E1440, Pittsburgh, PA, USA, 15213
| |
Collapse
|
10
|
Passera B, Harquel S, Chauvin A, Gérard P, Lai L, Moro E, Meoni S, Fraix V, David O, Raffin E. Multi-scale and cross-dimensional TMS mapping: A proof of principle in patients with Parkinson's disease and deep brain stimulation. Front Neurosci 2023; 17:1004763. [PMID: 37214390 PMCID: PMC10192635 DOI: 10.3389/fnins.2023.1004763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/29/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) mapping has become a critical tool for exploratory studies of the human corticomotor (M1) organization. Here, we propose to gather existing cutting-edge TMS-EMG and TMS-EEG approaches into a combined multi-dimensional TMS mapping that considers local and whole-brain excitability changes as well as state and time-specific changes in cortical activity. We applied this multi-dimensional TMS mapping approach to patients with Parkinson's disease (PD) with Deep brain stimulation (DBS) of the sub-thalamic nucleus (STN) ON and OFF. Our goal was to identifying one or several TMS mapping-derived markers that could provide unprecedent new insights onto the mechanisms of DBS in movement disorders. Methods Six PD patients (1 female, mean age: 62.5 yo [59-65]) implanted with DBS-STN for 1 year, underwent a robotized sulcus-shaped TMS motor mapping to measure changes in muscle-specific corticomotor representations and a movement initiation task to probe state-dependent modulations of corticospinal excitability in the ON (using clinically relevant DBS parameters) and OFF DBS states. Cortical excitability and evoked dynamics of three cortical areas involved in the neural control of voluntary movements (M1, pre-supplementary motor area - preSMA and inferior frontal gyrus - IFG) were then mapped using TMS-EEG coupling in the ON and OFF state. Lastly, we investigated the timing and nature of the STN-to-M1 inputs using a paired pulse DBS-TMS-EEG protocol. Results In our sample of patients, DBS appeared to induce fast within-area somatotopic re-arrangements of motor finger representations in M1, as revealed by mediolateral shifts of corticomuscle representations. STN-DBS improved reaction times while up-regulating corticospinal excitability, especially during endogenous motor preparation. Evoked dynamics revealed marked increases in inhibitory circuits in the IFG and M1 with DBS ON. Finally, inhibitory conditioning effects of STN single pulses on corticomotor activity were found at timings relevant for the activation of inhibitory GABAergic receptors (4 and 20 ms). Conclusion Taken together, these results suggest a predominant role of some markers in explaining beneficial DBS effects, such as a context-dependent modulation of corticospinal excitability and the recruitment of distinct inhibitory circuits, involving long-range projections from higher level motor centers and local GABAergic neuronal populations. These combined measures might help to identify discriminative features of DBS mechanisms towards deep clinical phenotyping of DBS effects in Parkinson's Disease and in other pathological conditions.
Collapse
Affiliation(s)
- Brice Passera
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Sylvain Harquel
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
- CNRS, INSERM, IRMaGe, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Alan Chauvin
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Pauline Gérard
- CNRS UMR 5105, Laboratoire Psychologie et Neurocognition, LPNC, Grenoble, France
| | - Lisa Lai
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Elena Moro
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Sara Meoni
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Valerie Fraix
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Estelle Raffin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, EPFL, Geneva, Switzerland
| |
Collapse
|
11
|
Asp AJ, Chintaluru Y, Hillan S, Lujan JL. Targeted neuroplasticity in spatiotemporally patterned invasive neuromodulation therapies for improving clinical outcomes. Front Neuroinform 2023; 17:1150157. [PMID: 37035718 PMCID: PMC10080034 DOI: 10.3389/fninf.2023.1150157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Anders J. Asp
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Yaswanth Chintaluru
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Neurology and Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora, CO, United States
| | - Sydney Hillan
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - J. Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
12
|
D’Onofrio V, Manzo N, Guerra A, Landi A, Baro V, Määttä S, Weis L, Porcaro C, Corbetta M, Antonini A, Ferreri F. Combining Transcranial Magnetic Stimulation and Deep Brain Stimulation: Current Knowledge, Relevance and Future Perspectives. Brain Sci 2023; 13:brainsci13020349. [PMID: 36831892 PMCID: PMC9954740 DOI: 10.3390/brainsci13020349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Deep brain stimulation (DBS) has emerged as an invasive neuromodulation technique for the treatment of several neurological disorders, but the mechanisms underlying its effects remain partially elusive. In this context, the application of Transcranial Magnetic Stimulation (TMS) in patients treated with DBS represents an intriguing approach to investigate the neurophysiology of cortico-basal networks. Experimental studies combining TMS and DBS that have been performed so far have mainly aimed to evaluate the effects of DBS on the cerebral cortex and thus to provide insights into DBS's mechanisms of action. The modulation of cortical excitability and plasticity by DBS is emerging as a potential contributor to its therapeutic effects. Moreover, pairing DBS and TMS stimuli could represent a method to induce cortical synaptic plasticity, the therapeutic potential of which is still unexplored. Furthermore, the advent of new DBS technologies and novel treatment targets will present new research opportunities and prospects to investigate brain networks. However, the application of the combined TMS-DBS approach is currently limited by safety concerns. In this review, we sought to present an overview of studies performed by combining TMS and DBS in neurological disorders, as well as available evidence and recommendations on the safety of their combination. Additionally, we outline perspectives for future research by highlighting knowledge gaps and possible novel applications of this approach.
Collapse
Affiliation(s)
| | - Nicoletta Manzo
- IRCCS San Camillo Hospital, Via Alberoni 70, 0126 Venice, Italy
| | - Andrea Guerra
- IRCCS Neuromed, 86077 Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Landi
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35128 Padova, Italy
| | - Valentina Baro
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35128 Padova, Italy
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70211 Kuopio, Finland
| | - Luca Weis
- Parkinson’s Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, 35128 Padova, Italy
| | - Camillo Porcaro
- Padova Neuroscience Center (PNC), University of Padova, 35129 Padova, Italy
- Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Institute of Cognitive Sciences, and Technologies (ISTC)-National Research Council (CNR), 00185 Rome, Italy
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Maurizio Corbetta
- Padova Neuroscience Center (PNC), University of Padova, 35129 Padova, Italy
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Angelo Antonini
- Parkinson’s Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, 35128 Padova, Italy
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Department of Neurology, Washington University, St. Louis, MO 63108, USA
- Department of Neuroscience, Washington University, St. Louis, MO 63108, USA
- Correspondence: (A.A.); (F.F.)
| | - Florinda Ferreri
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70211 Kuopio, Finland
- Unit of Neurology, Unit of Clinical Neurophysiology, Study Center of Neurodegeneration (CESNE), Department of Neuroscience, University of Padova, 35128 Padova, Italy
- Correspondence: (A.A.); (F.F.)
| |
Collapse
|
13
|
Campbell BA, Favi Bocca L, Escobar Sanabria D, Almeida J, Rammo R, Nagel SJ, Machado AG, Baker KB. The impact of pulse timing on cortical and subthalamic nucleus deep brain stimulation evoked potentials. Front Hum Neurosci 2022; 16:1009223. [PMID: 36204716 PMCID: PMC9532054 DOI: 10.3389/fnhum.2022.1009223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of pulse timing is an important factor in our understanding of how to effectively modulate the basal ganglia thalamocortical (BGTC) circuit. Single pulse low-frequency DBS-evoked potentials generated through electrical stimulation of the subthalamic nucleus (STN) provide insight into circuit activation, but how the long-latency components change as a function of pulse timing is not well-understood. We investigated how timing between stimulation pulses delivered in the STN region influence the neural activity in the STN and cortex. DBS leads implanted in the STN of five patients with Parkinson's disease were temporarily externalized, allowing for the delivery of paired pulses with inter-pulse intervals (IPIs) ranging from 0.2 to 10 ms. Neural activation was measured through local field potential (LFP) recordings from the DBS lead and scalp EEG. DBS-evoked potentials were computed using contacts positioned in dorsolateral STN as determined through co-registered post-operative imaging. We quantified the degree to which distinct IPIs influenced the amplitude of evoked responses across frequencies and time using the wavelet transform and power spectral density curves. The beta frequency content of the DBS evoked responses in the STN and scalp EEG increased as a function of pulse-interval timing. Pulse intervals <1.0 ms apart were associated with minimal to no change in the evoked response. IPIs from 1.5 to 3.0 ms yielded a significant increase in the evoked response, while those >4 ms produced modest, but non-significant growth. Beta frequency activity in the scalp EEG and STN LFP response was maximal when IPIs were between 1.5 and 4.0 ms. These results demonstrate that long-latency components of DBS-evoked responses are pre-dominantly in the beta frequency range and that pulse interval timing impacts the level of BGTC circuit activation.
Collapse
Affiliation(s)
- Brett A. Campbell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Leonardo Favi Bocca
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - David Escobar Sanabria
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Julio Almeida
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Richard Rammo
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sean J. Nagel
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G. Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kenneth B. Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
- *Correspondence: Kenneth B. Baker
| |
Collapse
|
14
|
Zhang MF, Chen WZ, Huang FB, Peng ZY, Quan YC, Tang ZM. Low-intensity transcranial ultrasound stimulation facilitates hand motor function and cortical excitability: A crossover, randomized, double blind study. Front Neurol 2022; 13:926027. [PMID: 36147048 PMCID: PMC9486841 DOI: 10.3389/fneur.2022.926027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Transcranial ultrasound stimulation (TUS) is a new form of non-invasive brain stimulation. Low-intensity TUS is considered highly safe. We aimed to investigate the effect of low-intensity TUS on hand reaction responses and cortical excitability in healthy adults. Methods This study used a crossover, randomized, and double-blind design. A total of 20 healthy participants were recruited for the study. All the participants received TUS and sham stimulation on separate days in random order. The finger tapping test (tapping score by using a tablet) and motor evoked potential (MEP) were assessed before and after stimulation, and discomfort levels were assessed using a visual analog scale (VAS) score. Results No significant differences in tapping score or MEP amplitude between the two experimental conditions were registered before stimulation. After stimulation, tapping scores were increased regardless of the specific treatment, and the real stimulation condition receiving TUS (90.4 ± 11.0 points) outperformed the sham stimulation condition (86.1 ± 8.4 points) (p = 0.002). The MEP latency of real TUS (21.85 ± 1.33 ms) was shorter than that of sham TUS (22.42 ± 1.43 ms) (p < 0.001). MEP amplitude of real TUS (132.18 ± 23.28 μV) was higher than that of sham TUS (114.74 ± 25.5 μV, p = 0.005). There was no significant difference in the discomfort score between the two conditions (p = 0.163). Conclusion Transcranial ultrasound stimulation (TUS) can decrease the hand reaction response time and latency of the MEP, enhance the excitability of the motor cortex, and improve hand motor function in healthy individuals without obvious discomfort.
Collapse
Affiliation(s)
- Meng-Fei Zhang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Wei-Zhou Chen
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Fub-Biao Huang
- Department of Occupational Therapy, China Rehabilitation Research Center, Beijing, China
| | - Zhi-Yong Peng
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Ying-Chan Quan
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
| | - Zhi-Ming Tang
- Department of Rehabilitation Medicine, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, Meizhou, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Zhi-Ming Tang
| |
Collapse
|
15
|
Sarica C, Fomenko A, Nankoo JF, Darmani G, Vetkas A, Yamamoto K, Lozano AM, Chen R. Toward focused ultrasound neuromodulation in deep brain stimulator implanted patients: Ex-vivo thermal, kinetic and targeting feasibility assessment. Brain Stimul 2022; 15:376-379. [PMID: 35121189 DOI: 10.1016/j.brs.2021.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Artur Vetkas
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Department of Neurosurgery, School of Medicine, University of Tartu, Tartu, Estonia
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Edmond J. Safra Program in Parkinson's Disease, University Health Network, Toronto, ON, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Cosentino G, Todisco M, Blandini F. Noninvasive neuromodulation in Parkinson's disease: Neuroplasticity implication and therapeutic perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:185-198. [PMID: 35034733 DOI: 10.1016/b978-0-12-819410-2.00010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noninvasive brain stimulation techniques can be used to study in vivo the changes of cortical activity and plasticity in subjects with Parkinson's disease (PD). Also, an increasing number of studies have suggested a potential therapeutic effect of these techniques. High-frequency repetitive transcranial magnetic stimulation (rTMS) and anodal transcranial direct current stimulation (tDCS) represent the most used stimulation paradigms to treat motor and nonmotor symptoms of PD. Both techniques can enhance cortical activity, compensating for its reduction related to subcortical dysfunction in PD. However, the use of suboptimal stimulation parameters can lead to therapeutic failure. Clinical studies are warranted to clarify in PD the additional effects of these stimulation techniques on pharmacologic and neurorehabilitation treatments.
Collapse
Affiliation(s)
- Giuseppe Cosentino
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Massimiliano Todisco
- Translational Neurophysiology Research Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Movement Disorders Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Fabio Blandini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Movement Disorders Research Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
17
|
Exploring the connections between basal ganglia and cortex revealed by transcranial magnetic stimulation, evoked potential and deep brain stimulation in dystonia. Eur J Paediatr Neurol 2022; 36:69-77. [PMID: 34922163 DOI: 10.1016/j.ejpn.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/30/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
We review the findings for motor cortical excitability, plasticity and evoked potentials in dystonia. Plasticity can be induced and assessed in cortical areas by non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and the invasive technique of deep brain stimulation (DBS), which allows access to deep brain structures. Single-pulse TMS measures have been widely studied in dystonia and consistently showed reduced silent period duration. Paired pulse TMS measures showed reduced short and long interval intracortical inhibition, interhemispheric inhibition, long-latency afferent inhibition and increased intracortical facilitation in dystonia. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex improved handwriting with prolongation of the silent period in focal hand dystonia patients. Continuous theta-burst stimulation (cTBS) of the cerebellum or cTBS of the dorsal premotor cortex improved dystonia in some studies. Plasticity induction protocols in dystonia demonstrated excessive motor cortical plasticity with the reduction in cortico-motor topographic specificity. Bilateral DBS of the globus pallidus internus (GPi) improves dystonia, associated pain and functional disability. Local field potentials recordings in dystonia patients suggested that there is increased power in the low-frequency band (4-12 Hz) in the GPi. Cortical evoked potentials at peak latencies of 10 and 25 ms can be recorded with GPi stimulation in dystonia. Plasticity induction protocols based on the principles of spike timing dependent plasticity that involved repeated pairing of GPi-DBS and motor cortical TMS at latencies of cortical evoked potentials induced motor cortical plasticity. These studies expanded our knowledge of the pathophysiology of dystonia and how cortical excitability and plasticity are altered with different treatments such as DBS.
Collapse
|
18
|
Weaver KE, Caldwell DJ, Cronin JA, Kuo CH, Kogan M, Houston B, Sanchez V, Martinez V, Ojemann JG, Rane S, Ko AL. Concurrent Deep Brain Stimulation Reduces the Direct Cortical Stimulation Necessary for Motor Output. Mov Disord 2020; 35:2348-2353. [PMID: 32914888 DOI: 10.1002/mds.28255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Converging literatures suggest that deep brain stimulation (DBS) in Parkinson's disease affects multiple circuit mechanisms. One proposed mechanism is the normalization of primary motor cortex (M1) pathophysiology via effects on the hyperdirect pathway. OBJECTIVES We hypothesized that DBS would reduce the current intensity necessary to modulate motor-evoked potentials from focally applied direct cortical stimulation (DCS). METHODS Intraoperative subthalamic DBS, DCS, and preoperative diffusion tensor imaging data were acquired in 8 patients with Parkinson's disease. RESULTS In 7 of 8 patients, DBS significantly reduced the M1 DCS current intensity required to elicit motor-evoked potentials. This neuromodulation was specific to select DBS bipolar configurations. In addition, the volume of activated tissue models of these configurations were significantly associated with overlap of the hyperdirect pathway. CONCLUSIONS DBS reduces the current necessary to elicit a motor-evoked potential using DCS. This supports a circuit mechanism of DBS effectiveness, potentially involving the hyperdirect pathway that speculatively may underlie reductions in hypokinetic abnormalities in Parkinson's disease. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kurt E Weaver
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA.,Graduate Program in Neuroscience, University of Washington School of Medicine, Seattle, Washington, USA.,Center for NeuroTechnologies, University of Washington School of Medicine, Seattle, Washington, USA
| | - David J Caldwell
- Graduate Program in Neuroscience, University of Washington School of Medicine, Seattle, Washington, USA.,Department of BioEngineering, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jeneva A Cronin
- Graduate Program in Neuroscience, University of Washington School of Medicine, Seattle, Washington, USA.,Department of BioEngineering, University of Washington School of Medicine, Seattle, Washington, USA
| | - Chao-Hung Kuo
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Michael Kogan
- Department of Neurosurgery, University of Buffalo, Buffalo, New York, USA
| | - Brady Houston
- Dept of Electrical Engineering, University of Washington School of Medicine, Seattle, Washington, USA
| | - Victor Sanchez
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vicente Martinez
- Department of Rehabilitative Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jeffrey G Ojemann
- Graduate Program in Neuroscience, University of Washington School of Medicine, Seattle, Washington, USA.,Center for NeuroTechnologies, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Swati Rane
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andrew L Ko
- Graduate Program in Neuroscience, University of Washington School of Medicine, Seattle, Washington, USA.,Center for NeuroTechnologies, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
19
|
Short latency cortical evoked potentials elicited by subthalamic nucleus deep brain stimulation: Commentary and results from paired pulse studies. Clin Neurophysiol 2019; 131:465-467. [PMID: 31879060 DOI: 10.1016/j.clinph.2019.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 11/21/2022]
|
20
|
Horn A, Kühn AA. Linking invasive and noninvasive neuromodulation techniques to study network properties of the brain. Clin Neurophysiol 2019; 130:548-549. [PMID: 30732982 DOI: 10.1016/j.clinph.2018.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 11/24/2022]
Affiliation(s)
- Andreas Horn
- Movement Disorder and Neuromodulation Unit, Dept. of Neurology, Charité Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Dept. of Neurology, Charité Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|