1
|
Nie P, Wang T, Wu Q, Chen W, Shen F, Huang L, Dong X. Attention Deficits in Migraine: Mismatch Negativity and P3a in an Event-Related Potential Study. J Pain Res 2025; 18:1161-1171. [PMID: 40092720 PMCID: PMC11908398 DOI: 10.2147/jpr.s506708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Attention performance in chronic migraine remains unclear. The present study aimed to explore the pre-attentive detection and attention orienting ability in individuals with chronic migraine (CM) measured by mismatch negativity (MMN) and P3a components and assess their associations with migraine characteristics. Methods This cross-sectional observational study recruited 25 individuals with episodic migraine (EM), 25 individuals with CM and 25 healthy controls (HC) matched for age, sex, and educational level. The MMN and P3a components were measured using event-related potential (ERPs) tools with auditory oddball paradigms and migraine characteristics were collected. Results Individuals with CM exhibited a longer MMN latency (p = 0.010) and a lower P3a amplitude than HC (p = 0.004) and EM (p = 0.002). Correlation analysis showed that P3a amplitude was negatively correlated with headache attack frequency and the Migraine Disability Assessment Scale (MIDAS), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HAMD) scores. Conclusion Individuals with CM showed deficits in pre-attentive detection and attention orientation. Moreover, attention-oriented dysfunction is associated with headache attack frequency, headache-related disability, anxiety and depression.
Collapse
Affiliation(s)
- Ping Nie
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Teng Wang
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Qian Wu
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Weikai Chen
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of Neurology, The Third Hospital of Xiamen, Xiamen, 361000, People’s Republic of China
| | - Feifei Shen
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Lin Huang
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Xin Dong
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
- Department of Neurosurgery, Chongqing Hospital of Jiangsu Province Hospital, Chongqing, 401420, People’s Republic of China
| |
Collapse
|
2
|
Gopalakrishnan R, Malan NS, Mandava N, Dunn EJ, Nero N, Burgess RC, Mays M, Hogue O. Magnetoencephalography studies in migraine and headache disorders: A systematic review. Headache 2025; 65:353-366. [PMID: 39523760 PMCID: PMC11794981 DOI: 10.1111/head.14867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Understanding the neural mechanisms underlying migraine and other primary headache disorders is critical for the development of long-term cures. Magnetoencephalography (MEG), an imaging modality that measures neuronal currents and cortical excitability with high temporal and superior spatial resolution, has been increasingly used in neurological research. Initial MEG studies showed promise in directly recording cortical spreading depression-a cortical correlate of migraine with aura. However, lately MEG technology has highly evolved with greater potential to reveal underlying pathophysiology of migraine and primary headache disorders, and aid in the identification of biomarkers. OBJECTIVE To systematically review the use of MEG in migraine and other primary headache disorders and summarize findings. METHODS We conducted a systematic search and selection of MEG studies in migraine and primary headache disorders from inception until June 8, 2023, in Medline, Embase, Cochrane, and Scopus databases. Peer-reviewed English articles reporting the use of MEG for clinical or research purposes in migraine and primary headache disorders were selected. RESULTS We found 560 articles and included 38 in this review after screening. Twelve studies investigated resting-state, while others investigated a sensory modality using an evoked or event-related paradigm with a total of 35 cohort and 3 case studies. Thirty-two studies focused exclusively on migraine, while the rest reported other primary headache disorders. CONCLUSION The findings show an evolution of MEG from a 7- to a 306-channel system and analysis evolving from sensor-level evoked responses to more advanced source-level connectivity measures. A relatively few MEG studies portrayed migraine and primary headache disorders as a sensory abnormality, especially of the visual system. We found heterogeneity in the datasets, data reporting standards (due to constantly evolving MEG technology and analysis methods), and patient characteristics. Studies were inadequately powered and there was no evidence of blinding procedures to avoid selection bias in case-control studies, which could have led to false-positive findings. More studies are needed to investigate the affective-cognitive aspects that exacerbate pain and disability in migraine and primary headache disorders.
Collapse
Affiliation(s)
| | - Nitesh Singh Malan
- Center for Neurological Restoration, Neurological InstituteCleveland ClinicClevelandOhioUSA
| | - Nymisha Mandava
- Center for Quantitative Health Sciences, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Eric J. Dunn
- Department of Neurology, Neurological InstituteCleveland ClinicClevelandOhioUSA
| | - Neil Nero
- Floyd D. Loop Alumni LibraryCleveland ClinicClevelandOhioUSA
| | | | - MaryAnn Mays
- Center for Neurological Restoration, Neurological InstituteCleveland ClinicClevelandOhioUSA
| | - Olivia Hogue
- Center for Neurological Restoration, Neurological InstituteCleveland ClinicClevelandOhioUSA
- Center for Quantitative Health Sciences, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
3
|
Raghuraman L, Joshi SH. Application of EEG in the Diagnosis and Classification of Migraine: A Scoping Review. Cureus 2024; 16:e64961. [PMID: 39171023 PMCID: PMC11336234 DOI: 10.7759/cureus.64961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Migraine is a chronic debilitating disease affecting a significant number of people, more often women than men. The gold standard for diagnosis is the International Classification of Headache Disorders-3 (ICHD-3). Authors have identified multiple tight spots in the present method of diagnosis. An alternative method of diagnosis has always been coveted. Electroencephalogram (EEG) is one of the most researched of such alternatives. The visually evoked potential is the most studied; auditory evoked potentials and transcranial direct current stimulation are also being studied. Cortical hyperexcitability and habituation deficit to sensory stimuli are some of the consistent findings. Alpha oscillations are among the most frequently studied bands; spectral analysis of EEG waves has often shown more reliable and consistent results than features read off the EEG directly. EEG microstate is a novel and promising method showing characteristic identifiable features that may help diagnose Migraine patients. An alternative to the ICHD-3 criterion for diagnosing Migraines would be instrumental in promptly diagnosing the disease. EEG is one of the most explored alternatives within which enumerable features can be used to identify Migraines, of which the most promising are EEG microstates.
Collapse
Affiliation(s)
- Lakshana Raghuraman
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shiv H Joshi
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Helling RM, Perenboom MJL, Bauer PR, Carpay JA, Sander JW, Ferrari MD, Visser GH, Tolner EA. TMS-evoked EEG potentials demonstrate altered cortical excitability in migraine with aura. Brain Topogr 2023; 36:269-281. [PMID: 36781512 PMCID: PMC10014725 DOI: 10.1007/s10548-023-00943-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
Migraine is associated with altered sensory processing, that may be evident as changes in cortical responsivity due to altered excitability, especially in migraine with aura. Cortical excitability can be directly assessed by combining transcranial magnetic stimulation with electroencephalography (TMS-EEG). We measured TMS evoked potential (TEP) amplitude and response consistency as these measures have been linked to cortical excitability but were not yet reported in migraine.We recorded 64-channel EEG during single-pulse TMS on the vertex interictally in 10 people with migraine with aura and 10 healthy controls matched for age, sex and resting motor threshold. On average 160 pulses around resting motor threshold were delivered through a circular coil in clockwise and counterclockwise direction. Trial-averaged TEP responses, frequency spectra and phase clustering (over the entire scalp as well as in frontal, central and occipital midline electrode clusters) were compared between groups, including comparison to sham-stimulation evoked responses.Migraine and control groups had a similar distribution of TEP waveforms over the scalp. In migraine with aura, TEP responses showed reduced amplitude around the frontal and occipital N100 peaks. For the migraine and control groups, responses over the scalp were affected by current direction for the primary motor cortex, somatosensory cortex and sensory association areas, but not for frontal, central or occipital midline clusters.This study provides evidence of altered TEP responses in-between attacks in migraine with aura. Decreased TEP responses around the N100 peak may be indicative of reduced cortical GABA-mediated inhibition and expand observations on enhanced cortical excitability from earlier migraine studies using more indirect measurements.
Collapse
Affiliation(s)
- Robert M Helling
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW, Heemstede, The Netherlands
| | - Matthijs J L Perenboom
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Prisca R Bauer
- Department of Psychosomatic Medicine and Psychotherapy, Faculty of Medicine, University of Freiburg, Hauptstraße 8, 79104, Freiburg, Germany
| | - Johannes A Carpay
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Department of Neurology, Tergooi Hospitals, Van Riebeeckweg 212, 1213 XZ, Hilversum, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW, Heemstede, The Netherlands.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW, Heemstede, The Netherlands
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. .,Department of Human Genetics, Leiden University Medical Centre, Postal Zone S4-P, PO Box 9600, Leiden, The Netherlands.
| |
Collapse
|
5
|
Paemeleire K, Vandenbussche N, Stark R. Migraine without aura. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:151-167. [PMID: 38043959 DOI: 10.1016/b978-0-12-823356-6.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Migraine without aura is the commonest form of migraine in both children and adults. The diagnosis is made by applying the International Classification of Headache Disorders Third Edition subsection for migraine without aura (ICHD-3 subsection 1.1). Attacks in patients with migraine without aura are characterized by their polyphasic presentation (prodrome, headache phase, postdromal phase). The symptomatology of attacks is diverse and heterogeneous, with most common symptoms being photophobia, phonophobia, nausea, vomiting, and aggravation of pain by movement. The clinician and researcher who wants to learn about migraine without aura needs to be able to apply the ICHD-3 criteria with its specific symptomatology to make a correct diagnosis, but also needs to be aware about the plethora of symptoms patients may experience. In this chapter, the reader will explore the clinical phenotypical features of migraine without aura.
Collapse
Affiliation(s)
- Koen Paemeleire
- Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | | | - Richard Stark
- Department of Neurology, Alfred Hospital, Monash University, Melbourne, VIC, Australia; Department of Neurosciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Li Y, Chen G, Lv J, Hou L, Dong Z, Wang R, Su M, Yu S. Abnormalities in resting-state EEG microstates are a vulnerability marker of migraine. J Headache Pain 2022; 23:45. [PMID: 35382739 PMCID: PMC8981824 DOI: 10.1186/s10194-022-01414-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
Background Resting-state EEG microstates are thought to reflect brief activations of several interacting components of resting-state brain networks. Surprisingly, we still know little about the role of these microstates in migraine. In the present study, we attempted to address this issue by examining EEG microstates in patients with migraine without aura (MwoA) during the interictal period and comparing them with those of a group of healthy controls (HC). Methods Resting-state EEG was recorded in 61 MwoA patients (50 females) and 66 HC (50 females). Microstate parameters were compared between the two groups. We computed four widely identified canonical microstate classes A-D. Results Microstate classes B and D displayed higher time coverage and occurrence in the MwoA patient group than in the HC group, while microstate class C exhibited significantly lower time coverage and occurrence in the MwoA patient group. Meanwhile, the mean duration of microstate class C was significantly shorter in the MwoA patient group than in the HC group. Moreover, among the MwoA patient group, the duration of microstate class C correlated negatively with clinical measures of headache-related disability as assessed by the six-item Headache Impact Test (HIT-6). Finally, microstate syntax analysis showed significant differences in transition probabilities between the two groups, primarily involving microstate classes B, C, and D. Conclusions By exploring EEG microstate characteristics at baseline we were able to explore the neurobiological mechanisms underlying altered cortical excitability and aberrant sensory, affective, and cognitive processing, thus deepening our understanding of migraine pathophysiology.
Collapse
|
7
|
ElShafei HA, Masson R, Fakche C, Fornoni L, Moulin A, Caclin A, Bidet-Caulet A. Age-related differences in bottom-up and top-down attention: Insights from EEG and MEG. Eur J Neurosci 2022; 55:1215-1231. [PMID: 35112420 PMCID: PMC9303169 DOI: 10.1111/ejn.15617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 11/26/2022]
Abstract
Attention operates through top‐down and bottom‐up processes, and a balance between these processes is crucial for daily tasks. Imperilling such balance could explain ageing‐associated attentional problems such as exacerbated distractibility. In this study, we aimed to characterize this enhanced distractibility by investigating the impact of ageing upon event‐related components associated with top‐down and bottom‐up attentional processes. MEG and EEG data were acquired from 14 older and 14 younger healthy adults while performing a task that conjointly evaluates top‐down and bottom‐up attention. Event‐related components were analysed on sensor and source levels. In comparison with the younger group, the older mainly displayed (1) reduced target anticipation processes (reduced CMV), (2) increased early target processing (larger P50 but smaller N1) and (3) increased processing of early distracting sounds (larger N1 but reduced P3a), followed by a (4) prolonged reorientation towards the main task (larger RON). Taken together, our results suggest that the enhanced distractibility in ageing could stem from top‐down deficits, in particular from reduced inhibitory and reorientation processes.
Collapse
Affiliation(s)
- Hesham A ElShafei
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France.,Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands.,Donders Centre for Cognitive Neuroimaging, EN, Nijmegen, Netherlands
| | - Rémy Masson
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Camille Fakche
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Lesly Fornoni
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Annie Moulin
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Aurélie Bidet-Caulet
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
8
|
Ruby P, Masson R, Chatard B, Hoyer R, Bottemanne L, Vallat R, Bidet-Caulet A. High Dream Recall Frequency Is Associated with an Increase of Both Bottom-Up and Top-Down Attentional Processes. Cereb Cortex 2021; 32:3752-3762. [PMID: 34902861 DOI: 10.1093/cercor/bhab445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Event-related potentials (ERPs) associated with the involuntary orientation of (bottom-up) attention toward an unexpected sound are of larger amplitude in high dream recallers (HR) than in low dream recallers (LR) during passive listening, suggesting different attentional functioning. We measured bottom-up and top-down attentional performance and their cerebral correlates in 18 HR (11 women, age = 22.7 years, dream recall frequency = 5.3 days with a dream recall per week) and 19 LR (10 women, age = 22.3, DRF = 0.2) using EEG and the Competitive Attention Task. Between-group differences were found in ERPs but not in behavior. The results show that HR present larger ERPs to distracting sounds than LR even during active listening, arguing for enhanced bottom-up processing of irrelevant sounds. HR also presented larger contingent negative variation during target expectancy and P3b to target sounds than LR, speaking for an enhanced recruitment of top-down attention. The attentional balance seems preserved in HR since their performances are not altered, but possibly at a higher resource cost. In HR, increased bottom-up processes would favor dream recall through awakening facilitation during sleep and enhanced top-down processes may foster dream recall through increased awareness and/or short-term memory stability of dream content.
Collapse
Affiliation(s)
- Perrine Ruby
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| | - Rémy Masson
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| | - Benoit Chatard
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| | - Roxane Hoyer
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| | - Laure Bottemanne
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| | - Raphael Vallat
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| | - Aurélie Bidet-Caulet
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| |
Collapse
|