1
|
Chen J, Ye C, Hou X, Niu Y, Sun L. Bias Calibration of Optically Pumped Magnetometers Based on Variable Sensitivity. SENSORS (BASEL, SWITZERLAND) 2025; 25:433. [PMID: 39860803 PMCID: PMC11768902 DOI: 10.3390/s25020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
Optically pumped magnetometers (OPMs) functioning in the spin-exchange relaxation-free (SERF) regime have emerged as attractive options for measuring weak magnetic fields, owing to their portability and remarkable sensitivity. The operation of SERF-OPM critically relies on the ambient magnetic field; thus, a magnetic field compensation device is commonly employed to mitigate the ambient magnetic field to near zero. Nonetheless, the bias of the OPM may influence the compensation impact, a subject that remains unexamined. This paper introduced an innovative bias calibration technique for OPMs. The sensitivity of the OPM was altered by adjusting the cell temperature. The output of the OPM was then documented with varying sensitivity. It is assumed that the signal exhibits a linear correlation with the environmental magnetic field, and the statistical characteristics of the magnetic field are identical for both measurements, upon which the bias of the OPM is assessed. The bias was subsequently considered in the feedback magnetic field compensation mechanism. The results indicate that this technique might successfully reduce environmental magnetic fluctuations and enhance the sensitivity of the OPM. This technique measured the magnetic field produced by the human heart, confirming the viability of the ultra-weak biomagnetic field measurement approach.
Collapse
Affiliation(s)
- Jieya Chen
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China; (X.H.); (Y.N.)
| | - Chaofeng Ye
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China; (X.H.); (Y.N.)
| | - Xingshen Hou
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China; (X.H.); (Y.N.)
| | - Yaqiong Niu
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China; (X.H.); (Y.N.)
| | - Limin Sun
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| |
Collapse
|
2
|
Spedden ME, O’Neill GC, Tierney TM, West TO, Schmidt M, Mellor S, Farmer SF, Bestmann S, Barnes GR. Towards non-invasive imaging through spinal-cord generated magnetic fields. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1470970. [PMID: 39445170 PMCID: PMC11496111 DOI: 10.3389/fmedt.2024.1470970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Non-invasive imaging of the human spinal cord is a vital tool for understanding the mechanisms underlying its functions in both healthy and pathological conditions. However, non-invasive imaging presents a significant methodological challenge because the spinal cord is difficult to access with conventional neurophysiological approaches, due to its proximity to other organs and muscles, as well as the physiological movements caused by respiration, heartbeats, and cerebrospinal fluid (CSF) flow. Here, we discuss the present state and future directions of spinal cord imaging, with a focus on the estimation of current flow through magnetic field measurements. We discuss existing cryogenic (superconducting) and non-cryogenic (optically-pumped magnetometer-based, OPM) systems, and highlight their strengths and limitations for studying human spinal cord function. While significant challenges remain, particularly in source imaging and interference rejection, magnetic field-based neuroimaging offers a novel avenue for advancing research in various areas. These include sensorimotor processing, cortico-spinal interplay, brain and spinal cord plasticity during learning and recovery from injury, and pain perception. Additionally, this technology holds promise for diagnosing and optimizing the treatment of spinal cord disorders.
Collapse
Affiliation(s)
- Meaghan E. Spedden
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - George C. O’Neill
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Tim M. Tierney
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Timothy O. West
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- Department of Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Maike Schmidt
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Stephanie Mellor
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Simon F. Farmer
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurology, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Sven Bestmann
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Gareth R. Barnes
- Department of Imaging Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Nierula B, Stephani T, Bailey E, Kaptan M, Pohle LMG, Horn U, Mouraux A, Maess B, Villringer A, Curio G, Nikulin VV, Eippert F. A multichannel electrophysiological approach to noninvasively and precisely record human spinal cord activity. PLoS Biol 2024; 22:e3002828. [PMID: 39480757 PMCID: PMC11527246 DOI: 10.1371/journal.pbio.3002828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/02/2024] [Indexed: 11/02/2024] Open
Abstract
The spinal cord is of fundamental importance for integrative processing in brain-body communication, yet routine noninvasive recordings in humans are hindered by vast methodological challenges. Here, we overcome these challenges by developing an easy-to-use electrophysiological approach based on high-density multichannel spinal recordings combined with multivariate spatial-filtering analyses. These advances enable a spatiotemporal characterization of spinal cord responses and demonstrate a sensitivity that permits assessing even single-trial responses. To furthermore enable the study of integrative processing along the neural processing hierarchy in somatosensation, we expand this approach by simultaneous peripheral, spinal, and cortical recordings and provide direct evidence that bottom-up integrative processing occurs already within the spinal cord and thus after the first synaptic relay in the central nervous system. Finally, we demonstrate the versatility of this approach by providing noninvasive recordings of nociceptive spinal cord responses during heat-pain stimulation. Beyond establishing a new window on human spinal cord function at millisecond timescale, this work provides the foundation to study brain-body communication in its entirety in health and disease.
Collapse
Affiliation(s)
- Birgit Nierula
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tilman Stephani
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Emma Bailey
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Merve Kaptan
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Lisa-Marie Geertje Pohle
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Ulrike Horn
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - André Mouraux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Burkhard Maess
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gabriel Curio
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Vadim V. Nikulin
- Research Group Neural Interactions and Dynamics, Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
4
|
Mardell LC, Spedden ME, O'Neill GC, Tierney TM, Timms RC, Zich C, Barnes GR, Bestmann S. Concurrent spinal and brain imaging with optically pumped magnetometers. J Neurosci Methods 2024; 406:110131. [PMID: 38583588 DOI: 10.1016/j.jneumeth.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND The spinal cord and its interactions with the brain are fundamental for movement control and somatosensation. However, brain and spinal electrophysiology in humans have largely been treated as distinct enterprises, in part due to the relative inaccessibility of the spinal cord. Consequently, there is a dearth of knowledge on human spinal electrophysiology, including the multiple pathologies that affect the spinal cord as well as the brain. NEW METHOD Here we exploit recent advances in the development of wearable optically pumped magnetometers (OPMs) which can be flexibly arranged to provide coverage of both the spinal cord and the brain in relatively unconstrained environments. This system for magnetospinoencephalography (MSEG) measures both spinal and cortical signals simultaneously by employing custom-made scanning casts. RESULTS We evidence the utility of such a system by recording spinal and cortical evoked responses to median nerve stimulation at the wrist. MSEG revealed early (10 - 15 ms) and late (>20 ms) responses at the spinal cord, in addition to typical cortical evoked responses (i.e., N20). COMPARISON WITH EXISTING METHODS Early spinal evoked responses detected were in line with conventional somatosensory evoked potential recordings. CONCLUSION This MSEG system demonstrates the novel ability for concurrent non-invasive millisecond imaging of brain and spinal cord.
Collapse
Affiliation(s)
- Lydia C Mardell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK.
| | - Meaghan E Spedden
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - Ryan C Timms
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - Catharina Zich
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK; Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| |
Collapse
|
5
|
Tanaka Y, Sasaki T, Kawabata S, Hashimoto J, Higashikawa H, Hoshino Y, Sekihara K, Adachi Y, Fujita K, Nimura A, Watanabe T, Miyano Y, Kaminaka S, Yamamoto Y, Yoshii T. Assessing ulnar neuropathy at the elbow using magnetoneurography. Clin Neurophysiol 2024; 161:180-187. [PMID: 38520798 DOI: 10.1016/j.clinph.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE To measure neuromagnetic fields of ulnar neuropathy patients at the elbow after electrical stimulation and evaluate ulnar nerve function at the elbow with high spatial resolution. METHODS A superconducting quantum interference device magnetometer system recorded neuromagnetic fields of the ulnar nerve at the elbow after electrical stimulation at the wrist in 16 limbs of 16 healthy volunteers and 21 limbs of 20 patients with ulnar neuropathy at the elbow. After artifact removal, neuromagnetic field signals were processed into current distributions, which were superimposed onto X-ray images for visualization. RESULTS Based on the results in healthy volunteers, conduction velocity of 30 m/s or 50% attenuation in current amplitude was set as the reference value for conduction disturbance. Of the 21 patient limbs, 15 were measurable and lesion sites were detected, whereas 6 limbs were unmeasurable due to weak neuromagnetic field signals. Seven limbs were deemed normal by nerve conduction study, but 5 showed conduction disturbances on magnetoneurography. CONCLUSIONS Measuring the magnetic field after nerve stimulation enabled visualization of neurophysiological activity in patients with ulnar neuropathy at the elbow and evaluation of conduction disturbances. SIGNIFICANCE Magnetoneurography may be useful for assessing lesion sites in patients with ulnar neuropathy at the elbow.
Collapse
Affiliation(s)
- Yuta Tanaka
- Department of Orthopedic Surgery, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Toru Sasaki
- Department of Orthopedic Surgery, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Shigenori Kawabata
- Department of Orthopedic Surgery, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Advanced Technology in Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Jun Hashimoto
- Department of Orthopedic Surgery, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Advanced Technology in Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Hisato Higashikawa
- Department of Orthopedic Surgery, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Yuko Hoshino
- Department of Advanced Technology in Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Kensuke Sekihara
- Department of Advanced Technology in Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Yoshiaki Adachi
- Applied Electronics Laboratory, Kanazawa Institute of Technology, 7-1 Ogigaoka, Nonoichi, Kanazawa-shi, Ishikawa 920-1331, Japan
| | - Koji Fujita
- Department of Functional Joint Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Akimoto Nimura
- Department of Functional Joint Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Taishi Watanabe
- Ricoh Institute of Future Technology, RICOH Company, Ltd., 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Miyano
- Ricoh Institute of Future Technology, RICOH Company, Ltd., 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Saeri Kaminaka
- Ricoh Institute of Future Technology, RICOH Company, Ltd., 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yusuke Yamamoto
- Ricoh Institute of Future Technology, RICOH Company, Ltd., 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Toshitaka Yoshii
- Department of Orthopedic Surgery, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
6
|
Adachi Y, Kawabata S. SQUID magnetoneurography: an old-fashioned yet new tool for noninvasive functional imaging of spinal cords and peripheral nerves. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1351905. [PMID: 38690583 PMCID: PMC11058660 DOI: 10.3389/fmedt.2024.1351905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
We are engaged in the development and clinical application of a neural magnetic field measurement system that utilizes biomagnetic measurements to observe the activity of the spinal cord and peripheral nerves. Unlike conventional surface potential measurements, biomagnetic measurements are not affected by the conductivity distribution within the body, making them less influenced by the anatomical structure of body tissues. Consequently, functional testing using biomagnetic measurements can achieve higher spatial resolution compared to surface potential measurements. The neural magnetic field measurement, referred to as magnetoneurography, takes advantage of these benefits to enable functional testing of the spinal cord and peripheral nerves, while maintaining high spatial resolution and noninvasiveness. Our magnetoneurograph system is based on superconducting quantum interference devices (SQUIDs) similar to the conventional biomagnetic measurement systems. Various design considerations have been incorporated into the SQUID sensor array structure and signal processing software to make it suitable for detecting neural signal propagation along spinal cord and peripheral nerve. The technical validation of this system began in 1999 with a 3-channel SQUID system. Over the course of more than 20 years, we have continued technological development through medical-engineering collaboration, and in the latest prototype released in 2020, neural function imaging of the spinal cord and peripheral nerves, which could also be applied for the diagnosis of neurological disorders, has become possible. This paper provides an overview of the technical aspects of the magnetoneurograph system, covering the measurement hardware and software perspectives for providing diagnostic information, and its applications. Additionally, we discuss the integration with a helium recondensing system, which is a key factor in reducing running costs and achieving practicality in hospitals.
Collapse
Affiliation(s)
- Yoshiaki Adachi
- Applied Electronics Laboratory, Kanazawa Institute of Technology, Kanazawa, Japan
| | - Shigenori Kawabata
- Department of Advanced Technology in Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Section of Orthopaedic and Spine Surgery, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Kaptan M, Pfyffer D, Konstantopoulos CG, Law CS, Weber II KA, Glover GH, Mackey S. Recent developments and future avenues for human corticospinal neuroimaging. Front Hum Neurosci 2024; 18:1339881. [PMID: 38332933 PMCID: PMC10850311 DOI: 10.3389/fnhum.2024.1339881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Non-invasive neuroimaging serves as a valuable tool for investigating the mechanisms within the central nervous system (CNS) related to somatosensory and motor processing, emotions, memory, cognition, and other functions. Despite the extensive use of brain imaging, spinal cord imaging has received relatively less attention, regardless of its potential to study peripheral communications with the brain and the descending corticospinal systems. To comprehensively understand the neural mechanisms underlying human sensory and motor functions, particularly in pathological conditions, simultaneous examination of neuronal activity in both the brain and spinal cord becomes imperative. Although technically demanding in terms of data acquisition and analysis, a growing but limited number of studies have successfully utilized specialized acquisition protocols for corticospinal imaging. These studies have effectively assessed sensorimotor, autonomic, and interneuronal signaling within the spinal cord, revealing interactions with cortical processes in the brain. In this mini-review, we aim to examine the expanding body of literature that employs cutting-edge corticospinal imaging to investigate the flow of sensorimotor information between the brain and spinal cord. Additionally, we will provide a concise overview of recent advancements in functional magnetic resonance imaging (fMRI) techniques. Furthermore, we will discuss potential future perspectives aimed at enhancing our comprehension of large-scale neuronal networks in the CNS and their disruptions in clinical disorders. This collective knowledge will aid in refining combined corticospinal fMRI methodologies, leading to the development of clinically relevant biomarkers for conditions affecting sensorimotor processing in the CNS.
Collapse
Affiliation(s)
- Merve Kaptan
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Dario Pfyffer
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Christiane G. Konstantopoulos
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Christine S.W. Law
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Kenneth A. Weber II
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Gary H. Glover
- Radiological Sciences Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
8
|
Nakayama K, Kohara N, Paku M, Sato S, Nakamura M, Ando M, Taniguchi S, Ishihara M, Tani Y, Itakura T, Saito T, Yakushiji Y. Visualization of axonal and volume currents in median nerve compound action potential using magnetoneurography. Clin Neurophysiol 2023; 152:57-67. [PMID: 37307628 DOI: 10.1016/j.clinph.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Reconstruct compound median nerve action currents using magnetoneurography to clarify the physiological characteristics of axonal and volume currents and their relationship to potentials. METHODS The median nerves of both upper arms of five healthy individuals were investigated. The propagating magnetic field of the action potential was recorded using magnetoneurography, reconstructed into a current, and analyzed. The currents were compared with the potentials recorded from multipolar surface electrodes. RESULTS Reconstructed currents could be clearly visualized. Axonal currents flowed forward or backward in the axon, arcing away from the depolarization zone, turning about the subcutaneous volume conductor, and returning to the depolarization zone. The zero-crossing latency of the axonal current was approximately the same as the peak of its volume current and the negative peak of the surface electrode potential. Volume current waveforms were proportional to the derivative of axonal ones. CONCLUSIONS Magnetoneurography allows the visualization and quantitative evaluation of action currents. The currents in axons and in volume conductors could be clearly discriminated with good quality. Their properties were consistent with previous neurophysiological findings. SIGNIFICANCE Magnetoneurography could be a novel tool for elucidating nerve physiology and pathophysiology.
Collapse
Affiliation(s)
- Kentaro Nakayama
- Department of Neurology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Nobuo Kohara
- Department of Orthopedic Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan; Department of Neurology, Kobe City Medical Center General Hospital, 2-1-1 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Masaaki Paku
- Department of Orthopedic Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Shinji Sato
- RICOH Futures BU, RICOH Company, Ltd., 2-3-10 Kandasurugadai Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masataka Nakamura
- Department of Neurology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Muneharu Ando
- Department of Orthopedic Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Shinichirou Taniguchi
- Department of Orthopedic Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Masayuki Ishihara
- Department of Orthopedic Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Yoichi Tani
- Department of Orthopedic Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Takeshi Itakura
- Department of Orthopedic Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Takanori Saito
- Department of Orthopedic Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Yusuke Yakushiji
- Department of Neurology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
9
|
Detailed magnetoelectric analysis of a nerve impulse propagation along the brachial plexus. Clin Neurophysiol 2023; 145:129-138. [PMID: 36280574 DOI: 10.1016/j.clinph.2022.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/02/2022] [Accepted: 09/25/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To visualize impulse conduction along the brachial plexus through simultaneous electromagnetic measurements. METHODS Neuromagnetic fields following median nerve stimulation were recorded above the clavicle with a superconducting quantum interference device biomagnetometer system in 7 healthy volunteers. Compound nerve action potentials (CNAPs) were obtained from 12 locations. Pseudocolor maps of equivalent currents reconstructed from magnetic fields and isopotential contour maps were superimposed onto X-ray images. Surface potentials and current waveforms at virtual electrodes along the brachial plexus were compared. RESULTS In magnetic field analysis, the leading axonal current followed by a trailing backward current traveled rostrally along the brachial plexus. The spatial extent of the longitudinal intra-axonal currents corresponded to the extent of the positive-negative-positive potential field reflecting transmembrane volume currents. The peaks and troughs of the intra-axonal biphasic current waveforms coincided with the zero-crossings of triphasic CNAP waveforms. The amplitudes of CNAPs and current moments were linearly correlated. CONCLUSIONS Reconstructed neural activity in magnetic field analysis visualizes not only intra-axonal currents, but also transmembrane volume currents, which are in good agreement with the surface potential field. SIGNIFICANCE Magnetoneurography is a novel non-invasive functional imaging modality for the brachial plexus whose performance can surpass that of electric potential measurement.
Collapse
|