1
|
Moultrie F, Chiverton L, Hatami I, Lilien C, Servais L. Pushing the boundaries: future directions in the management of spinal muscular atrophy. Trends Mol Med 2025; 31:307-318. [PMID: 39794178 DOI: 10.1016/j.molmed.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
Spinal muscular atrophy (SMA) is a devastating, degenerative, paediatric neuromuscular disease which until recently was untreatable. Discovery of the responsible gene 30 years ago heralded a new age of pioneering therapeutic developments. Three disease-modifying therapies (DMTs) have received regulatory approval and have transformed the disease, reducing disability and prolonging patient survival. These therapies - with distinct mechanisms, routes of administration, dosing schedules, side effect profiles, and financial costs - have dramatically altered the clinical phenotypes of this condition and have presented fresh challenges for patient care. In this review article we discuss potential strategies to maximise clinical outcomes through early diagnosis and treatment, optimised dosing, use of therapeutic combinations and state-of-the-art physiotherapy techniques, and the development of innovative therapies targeting alternative mechanisms.
Collapse
Affiliation(s)
- Fiona Moultrie
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK.
| | - Laura Chiverton
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Isabel Hatami
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Charlotte Lilien
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Laurent Servais
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK; Neuromuscular Centre, Division of Paediatrics, University Hospital of Liège and University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
2
|
Wolman A, Çatal Y, Klar P, Steffener J, Northoff G. Repertoire of timescales in uni - and transmodal regions mediate working memory capacity. Neuroimage 2024; 291:120602. [PMID: 38579900 DOI: 10.1016/j.neuroimage.2024.120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Working memory (WM) describes the dynamic process of maintenance and manipulation of information over a certain time delay. Neuronally, WM recruits a distributed network of cortical regions like the visual and dorsolateral prefrontal cortex as well as the subcortical hippocampus. How the input dynamics and subsequent neural dynamics impact WM remains unclear though. To answer this question, we combined the analysis of behavioral WM capacity with measuring neural dynamics through task-related power spectrum changes, e.g., median frequency (MF) in functional magnetic resonance imaging (fMRI). We show that the processing of the input dynamics, e.g., the task structure's specific timescale, leads to changes in the unimodal visual cortex's corresponding timescale which also relates to working memory capacity. While the more transmodal hippocampus relates to working memory capacity through its balance across multiple timescales or frequencies. In conclusion, we here show the relevance of both input dynamics and different neural timescales for WM capacity in uni - and transmodal regions like visual cortex and hippocampus for the subject's WM performance.
Collapse
Affiliation(s)
- Angelika Wolman
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada; Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada.
| | - Yasir Çatal
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Philipp Klar
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Jason Steffener
- Interdisciplinary School of Health Science, University of Ottawa, 200 Lees Ave, Ottawa, ON K1N 6N5, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
3
|
Giustiniani A, Quartarone A. Defining the concept of reserve in the motor domain: a systematic review. Front Neurosci 2024; 18:1403065. [PMID: 38745935 PMCID: PMC11091373 DOI: 10.3389/fnins.2024.1403065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
A reserve in the motor domain may underlie the capacity exhibited by some patients to maintain motor functionality in the face of a certain level of disease. This form of "motor reserve" (MR) could include cortical, cerebellar, and muscular processes. However, a systematic definition has not been provided yet. Clarifying this concept in healthy individuals and patients would be crucial for implementing prevention strategies and rehabilitation protocols. Due to its wide application in the assessment of motor system functioning, non-invasive brain stimulation (NIBS) may support such definition. Here, studies focusing on reserve in the motor domain and studies using NIBS were revised. Current literature highlights the ability of the motor system to create a reserve and a possible role for NIBS. MR could include several mechanisms occurring in the brain, cerebellum, and muscles, and NIBS may support the understanding of such mechanisms.
Collapse
|
4
|
Habets LE, Bartels B, Jeneson JAL, Asselman FL, Stam M, Wijngaarde CA, Wadman RI, van Eijk RPA, Stegeman DF, Ludo van der Pol W. Enhanced low-threshold motor unit capacity during endurance tasks in patients with spinal muscular atrophy using pyridostigmine. Clin Neurophysiol 2023; 154:100-106. [PMID: 37595479 DOI: 10.1016/j.clinph.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/04/2023] [Accepted: 06/09/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE To investigate the electrophysiological basis of pyridostigmine enhancement of endurance performance documented earlier in patients with spinal muscular atrophy (SMA). METHODS We recorded surface electromyography (sEMG) in four upper extremity muscles of 31 patients with SMA types 2 and 3 performing endurance shuttle tests (EST) and maximal voluntary contraction (MVC) measurements during a randomized, double blind, cross-over, phase II trial. Linear mixed effect models (LMM) were used to assess the effect of pyridostigmine on (i) time courses of median frequencies and of root mean square (RMS) amplitudes of sEMG signals and (ii) maximal RMS amplitudes during MVC measurements. These sEMG changes over time indicate levels of peripheral muscle fatigue and recruitment of new motor units, respectively. RESULTS In comparison to a placebo, patients with SMA using pyridostigmine had fourfold smaller decreases in frequency and twofold smaller increases in amplitudes of sEMG signals in some muscles, recorded during ESTs (p < 0.05). We found no effect of pyridostigmine on MVC RMS amplitudes. CONCLUSIONS sEMG parameters indicate enhanced low-threshold (LT) motor unit (MU) function in upper-extremity muscles of patients with SMA treated with pyridostigmine. This may underlie their improved endurance. SIGNIFICANCE Our results suggest that enhancing LT MU function may constitute a therapeutic strategy to reduce fatigability in patients with SMA.
Collapse
Affiliation(s)
- Laura E Habets
- Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - Bart Bartels
- Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, P.O. Box 85090, 3508 AB Utrecht, The Netherlands.
| | - Jeroen A L Jeneson
- Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, P.O. Box 85090, 3508 AB Utrecht, The Netherlands
| | - Fay-Lynn Asselman
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Marloes Stam
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Camiel A Wijngaarde
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Renske I Wadman
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Ruben P A van Eijk
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands; Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, P.O. Box 85500 Utrecht, the Netherlands
| | - Dick F Stegeman
- Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der, Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - W Ludo van der Pol
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
5
|
Rodriguez-Torres RS, Uher D, Gay EL, Coratti G, Dunaway Young S, Rohwer A, Muni Lofra R, De Vivo DC, Hirano M, Glynn NW, Montes J. Measuring Fatigue and Fatigability in Spinal Muscular Atrophy (SMA): Challenges and Opportunities. J Clin Med 2023; 12:jcm12103458. [PMID: 37240564 DOI: 10.3390/jcm12103458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Fatigue, a common symptom, together with the characteristic of performance fatigability, are well-documented features of SMA that impact quality of life and function. Importantly, establishing associations between multidimensional self-reported fatigue scales and patient performance has proven difficult. This review was conducted to evaluate the various patient-reported fatigue scales applied in SMA, with the objective of considering the limitations and advantages of each measure. Variable use of fatigue-related nomenclature, including conflicting terminology interpretation, has affected assessment of physical fatigue attributes, specifically perceived fatigability. This review encourages the development of original patient-reported scales to enable perceived fatigability assessment, providing a potential complementary method of evaluating treatment response.
Collapse
Affiliation(s)
- Rafael S Rodriguez-Torres
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Uher
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY 10115, USA
| | - Emma L Gay
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Giorgia Coratti
- Pediatric Neurology Unit, Catholic University, 00135 Rome, Italy
- Centro Clinico Nemo, U.O.C. Neuropsichiatria Infantile Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Sally Dunaway Young
- Department of Neurology and Clinical Neurosciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Annemarie Rohwer
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Robert Muni Lofra
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 7RU, UK
| | - Darryl C De Vivo
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nancy W Glynn
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jacqueline Montes
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
6
|
Kant-Smits K, Hulzebos EHJ, Habets LE, Asselman FL, Veldhoen ES, van Eijk RPA, de Groot JF, van der Pol WL, Bartels B. Respiratory muscle fatigability in patients with spinal muscular atrophy. Pediatr Pulmonol 2022; 57:3050-3059. [PMID: 36039838 PMCID: PMC9826393 DOI: 10.1002/ppul.26133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Respiratory failure is a major cause of morbidity and mortality in patients with Spinal Muscular Atrophy (SMA). Lack of endurance, or "fatigability," is an important symptom of SMA. In addition to respiratory muscle weakness, respiratory function in SMA may be affected by Respiratory Muscle Fatigability (RMF). AIM The purpose of this study was to explore RMF in patients with SMA. METHODS We assessed a Respiratory Endurance Test (RET) in 19 children (median age [years]: 11) and 36 adults (median age [years]: 34) with SMA types 2 and 3. Participants were instructed to breath against an inspiratory threshold load at either 20%, 35%, 45%, 55%, or 70% of their individual maximal inspiratory mouth pressure (PImax). RMF was defined as the inability to complete 60 consecutive breaths. Respiratory fatigability response was determined by change in maximal inspiratory mouth pressure (ΔPImax) and perceived fatigue (∆perceived fatigue). RESULTS The probability of RMF during the RET increased by 59%-69% over 60 breaths with every 10% increase in inspiratory threshold load (%PImax). Fatigability response was characterized by a large variability in ΔPImax (-21% to +16%) and a small increase in perceived fatigue (p = 0.041, range 0 to +3). CONCLUSION AND KEY FINDINGS Patients with SMA demonstrate a dose-dependent increase in RMF without severe increase in exercise-induced muscle weakness or perceived fatigue. Inspiratory muscle loading in patients with SMA seems feasible and its potential to stabilize or improve respiratory function in patients with SMA needs to be determined in further research.
Collapse
Affiliation(s)
- Kim Kant-Smits
- Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik H J Hulzebos
- Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Laura E Habets
- Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fay-Lynn Asselman
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Esther S Veldhoen
- Department of Pediatric Intensive Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ruben P A van Eijk
- University Medical Center Utrecht, Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, Utrecht, The Netherlands and University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Janke F de Groot
- Research Group Lifestyle and Health, HU University of Applied Health Sciences Utrecht, Utrecht, The Netherlands
| | - W Ludo van der Pol
- UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart Bartels
- Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Habets LE, Bartels B, Asselman FL, Hulzebos EHJ, Stegeman DF, Jeneson JAL, van der Pol WL. Motor Unit and Capillary Recruitment During Fatiguing Arm-Cycling Exercise in Spinal Muscular Atrophy Types 3 and 4. J Neuromuscul Dis 2022; 9:397-409. [PMID: 35466947 DOI: 10.3233/jnd-210765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Exercise intolerance is an important impairment in patients with SMA, but little is known about the mechanisms underlying this symptom. OBJECTIVE To investigate if reduced motor unit- and capillary recruitment capacity in patients with SMA contribute to exercise intolerance. METHODS Adolescent and adult patients with SMA types 3 and 4 (n = 15) and age- and gender matched controls (n = 15) performed a maximal upper body exercise test. We applied respiratory gas analyses, non-invasive surface electromyography (sEMG) and continuous wave near-infrared spectroscopy (CW-NIRS) to study oxygen consumption, arm muscle motor unit- and capillary recruitment, respectively. RESULTS Maximal exercise duration was twofold lower (p < 0.001) and work of breathing and ventilation was 1.6- and 1.8-fold higher (p < 0.05) in patients compared to controls, respectively. Regarding motor unit recruitment, we found higher normalized RMS amplitude onset values of sEMG signals from all muscles and the increase in normalized RMS amplitudes was similar in the m. triceps brachii, m. brachioradialis and m. flexor digitorum in SMA compared to controls. Median frequency, onset values were similar in patients and controls. We found a similar decrease in median frequencies of sEMG recordings from the m. biceps brachii, a diminished decrease from the m. brachioradialis and m. flexor digitorum, but a larger decrease from the m. triceps brachii. With respect to capillary recruitment, CW-NIRS recordings in m. biceps brachii revealed dynamics that were both qualitatively and quantitatively similar in patients and controls. CONCLUSION We found no evidence for the contribution of motor unit- and capillary recruitment capacity of the upper arm muscles in adolescent and adult patients with SMA types 3 and 4 as primary limiting factors to premature fatigue during execution of a maximal arm-cycling task.
Collapse
Affiliation(s)
- Laura E Habets
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - Bart Bartels
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - Fay-Lynn Asselman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht Brain Center, Utrecht University, GA Utrecht, The Netherlands
| | - Erik H J Hulzebos
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - Dick F Stegeman
- Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jeroen A L Jeneson
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht Brain Center, Utrecht University, GA Utrecht, The Netherlands
| |
Collapse
|