1
|
Siviero I, Bonfanti D, Menegaz G, Savazzi S, Mazzi C, Storti SF. Graph Analysis of TMS-EEG Connectivity Reveals Hemispheric Differences following Occipital Stimulation. SENSORS (BASEL, SWITZERLAND) 2023; 23:8833. [PMID: 37960532 PMCID: PMC10650175 DOI: 10.3390/s23218833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
(1) Background: Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) provides a unique opportunity to investigate brain connectivity. However, possible hemispheric asymmetries in signal propagation dynamics following occipital TMS have not been investigated. (2) Methods: Eighteen healthy participants underwent occipital single-pulse TMS at two different EEG sites, corresponding to early visual areas. We used a state-of-the-art Bayesian estimation approach to accurately estimate TMS-evoked potentials (TEPs) from EEG data, which has not been previously used in this context. To capture the rapid dynamics of information flow patterns, we implemented a self-tuning optimized Kalman (STOK) filter in conjunction with the information partial directed coherence (iPDC) measure, enabling us to derive time-varying connectivity matrices. Subsequently, graph analysis was conducted to assess key network properties, providing insight into the overall network organization of the brain network. (3) Results: Our findings revealed distinct lateralized effects on effective brain connectivity and graph networks after TMS stimulation, with left stimulation facilitating enhanced communication between contralateral frontal regions and right stimulation promoting increased intra-hemispheric ipsilateral connectivity, as evidenced by statistical test (p < 0.001). (4) Conclusions: The identified hemispheric differences in terms of connectivity provide novel insights into brain networks involved in visual information processing, revealing the hemispheric specificity of neural responses to occipital stimulation.
Collapse
Affiliation(s)
- Ilaria Siviero
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Davide Bonfanti
- Perception and Awareness (PandA) Lab., Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy; (D.B.); (S.S.); (C.M.)
| | - Gloria Menegaz
- Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Silvia Savazzi
- Perception and Awareness (PandA) Lab., Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy; (D.B.); (S.S.); (C.M.)
| | - Chiara Mazzi
- Perception and Awareness (PandA) Lab., Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy; (D.B.); (S.S.); (C.M.)
| | - Silvia Francesca Storti
- Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| |
Collapse
|
2
|
Hanning NM, Fernández A, Carrasco M. Dissociable roles of human frontal eye fields and early visual cortex in presaccadic attention. Nat Commun 2023; 14:5381. [PMID: 37666805 PMCID: PMC10477327 DOI: 10.1038/s41467-023-40678-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023] Open
Abstract
Shortly before saccadic eye movements, visual sensitivity at the saccade target is enhanced, at the expense of sensitivity elsewhere. Some behavioral and neural correlates of this presaccadic shift of attention resemble those of covert attention, deployed during fixation. Microstimulation in non-human primates has shown that presaccadic attention modulates perception via feedback from oculomotor to visual areas. This mechanism also seems plausible in humans, as both oculomotor and visual areas are active during saccade planning. We investigated this hypothesis by applying TMS to frontal or visual areas during saccade preparation. By simultaneously measuring perceptual performance, we show their causal and differential roles in contralateral presaccadic attention effects: Whereas rFEF+ stimulation enhanced sensitivity opposite the saccade target throughout saccade preparation, V1/V2 stimulation reduced sensitivity at the saccade target only shortly before saccade onset. These findings are consistent with presaccadic attention modulating perception through cortico-cortical feedback and further dissociate presaccadic and covert attention.
Collapse
Affiliation(s)
- Nina M Hanning
- Department of Psychology & Center for Neural Sciences, New York University, New York, NY, USA.
- Institut für Psychologie, Humboldt Universität zu Berlin, Berlin, Germany.
| | - Antonio Fernández
- Department of Psychology & Center for Neural Sciences, New York University, New York, NY, USA
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Marisa Carrasco
- Department of Psychology & Center for Neural Sciences, New York University, New York, NY, USA
| |
Collapse
|
3
|
Hanning NM, Fernández A, Carrasco M. Dissociable roles of human frontal eye fields and early visual cortex in presaccadic attention - evidence from TMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529691. [PMID: 36865228 PMCID: PMC9980111 DOI: 10.1101/2023.02.23.529691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Shortly before each saccadic eye movement, presaccadic attention improves visual sensitivity at the saccade target 1-5 at the expense of lowered sensitivity at non-target locations 6-11 . Some behavioral and neural correlates of presaccadic attention and covert attention -which likewise enhances sensitivity, but during fixation 12 -are similar 13 . This resemblance has led to the debatable 13-18 notion that presaccadic and covert attention are functionally equivalent and rely on the same neural circuitry 19-21 . At a broad scale, oculomotor brain structures (e.g., FEF) are also modulated during covert attention 22-24 - yet by distinct neuronal subpopulations 25-28 . Perceptual benefits of presaccadic attention rely on feedback from oculomotor structures to visual cortices 29,30 ( Fig. 1a ); micro-stimulation of FEF in non-human primates affects activity in visual cortex 31-34 and enhances visual sensitivity at the movement field of the stimulated neurons 35-37 . Similar feedback projections seem to exist in humans: FEF+ activation precedes occipital activation during saccade preparation 38,39 and FEF TMS modulates activity in visual cortex 40-42 and enhances perceived contrast in the contralateral hemifield 40 . We investigated presaccadic feedback in humans by applying TMS to frontal or visual areas during saccade preparation. By simultaneously measuring perceptual performance, we show the causal and differential roles of these brain regions in contralateral presaccadic benefits at the saccade target and costs at non-targets: Whereas rFEF+ stimulation reduced presaccadic costs throughout saccade preparation, V1/V2 stimulation reduced benefits only shortly before saccade onset. These effects provide causal evidence that presaccadic attention modulates perception through cortico-cortical feedback and further dissociate presaccadic and covert attention.
Collapse
|
4
|
Hernandez-Pavon JC, Veniero D, Bergmann TO, Belardinelli P, Bortoletto M, Casarotto S, Casula EP, Farzan F, Fecchio M, Julkunen P, Kallioniemi E, Lioumis P, Metsomaa J, Miniussi C, Mutanen TP, Rocchi L, Rogasch NC, Shafi MM, Siebner HR, Thut G, Zrenner C, Ziemann U, Ilmoniemi RJ. TMS combined with EEG: Recommendations and open issues for data collection and analysis. Brain Stimul 2023; 16:567-593. [PMID: 36828303 DOI: 10.1016/j.brs.2023.02.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) evokes neuronal activity in the targeted cortex and connected brain regions. The evoked brain response can be measured with electroencephalography (EEG). TMS combined with simultaneous EEG (TMS-EEG) is widely used for studying cortical reactivity and connectivity at high spatiotemporal resolution. Methodologically, the combination of TMS with EEG is challenging, and there are many open questions in the field. Different TMS-EEG equipment and approaches for data collection and analysis are used. The lack of standardization may affect reproducibility and limit the comparability of results produced in different research laboratories. In addition, there is controversy about the extent to which auditory and somatosensory inputs contribute to transcranially evoked EEG. This review provides a guide for researchers who wish to use TMS-EEG to study the reactivity of the human cortex. A worldwide panel of experts working on TMS-EEG covered all aspects that should be considered in TMS-EEG experiments, providing methodological recommendations (when possible) for effective TMS-EEG recordings and analysis. The panel identified and discussed the challenges of the technique, particularly regarding recording procedures, artifact correction, analysis, and interpretation of the transcranial evoked potentials (TEPs). Therefore, this work offers an extensive overview of TMS-EEG methodology and thus may promote standardization of experimental and computational procedures across groups.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA.
| | | | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Paolo Belardinelli
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy; Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Elias P Casula
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Faranak Farzan
- Simon Fraser University, School of Mechatronic Systems Engineering, Surrey, British Columbia, Canada
| | - Matteo Fecchio
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Elisa Kallioniemi
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Nigel C Rogasch
- University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia; Monash University, Melbourne, Australia
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregor Thut
- School of Psychology and Neuroscience, University of Glasgow, United Kingdom
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| |
Collapse
|
5
|
Sun L, Chen H, Zhang C, Cong F, Li X, Hämäläinen T. Decoding brain activities of literary metaphor comprehension: An event-related potential and EEG spectral analysis. Front Psychol 2022; 13:913521. [PMID: 35941953 PMCID: PMC9356233 DOI: 10.3389/fpsyg.2022.913521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Novel metaphors in literary texts (hereinafter referred to as literary metaphors) seem to be more creative and open-ended in meaning than metaphors in non-literary texts (non-literary metaphors). However, some disagreement still exists on how literary metaphors differ from non-literary metaphors. Therefore, this study explored the neural mechanisms of literary metaphors extracted from modern Chinese poetry by using the methods of Event-Related Potentials (ERPs) and Event-Related Spectral Perturbations (ERSPs), as compared with non-literary conventional metaphors and literal expressions outside literary texts. Forty-eight subjects were recruited to make the semantic relatedness judgment after reading the prime-target pairs in three linguistic conditions. According to the ERPs results, the earliest differences were presented during the time window of P200 component (170–260 ms) in the frontal and central areas, with the amplitude of P200 for literary metaphors more positive than the other two conditions, reflecting the early allocation of attention and the early conscious experience of the experimental stimuli. Meanwhile, significant differences were presented during the time window of N400 effect (430–530 ms), with the waveform of literary metaphors more negative than others in the frontal and central topography of scalp distributions, suggesting more efforts in retrieving conceptual knowledge for literary metaphors. The ERSPs analysis revealed that the frequency bands of delta and theta were both involved in the cognitive process of literary metaphor comprehension, with delta band distributed in the frontal and central scalp and theta band in parietal and occipital electrodes. Increases in the two power bands during different time windows provided extra evidences that the processing of literary metaphors required more attention and effort than non-literary metaphors and literal expressions in the semantic related tasks, suggesting that the cognitive process of literary metaphors was distinguished by different EEG spectral patterns.
Collapse
Affiliation(s)
- Lina Sun
- School of Foreign Languages, Dalian University of Technology, Dalian, China
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Hongjun Chen
- School of Foreign Languages, Dalian University of Technology, Dalian, China
- *Correspondence: Hongjun Chen,
| | - Chi Zhang
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Xueyan Li
- School of Foreign Languages, Dalian University of Technology, Dalian, China
| | - Timo Hämäläinen
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|