1
|
Breveglieri R, Brandolani R, Galletti C, Avenanti A, Fattori P. Time-dependent enhancement of corticospinal excitability during cortico-cortical paired associative stimulation of the hV6A-M1 network in the human brain. Neuroimage 2025; 316:121301. [PMID: 40472912 DOI: 10.1016/j.neuroimage.2025.121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/21/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025] Open
Abstract
Cortico-cortical paired associative stimulation (ccPAS) is a powerful transcranial magnetic stimulation (TMS) protocol thought to rely on Hebbian plasticity and known to strengthen effective connectivity, mainly within frontal lobe networks. Here, we expand on previous work by exploring the effects of ccPAS on the pathway linking the medial posterior parietal area hV6A with the primary motor cortex (M1), whose plasticity mechanisms remain largely unexplored. To assess the effective connectivity of the hV6A-M1 network, we measured motor-evoked potentials (MEPs) in 30 right-handed volunteers at rest during dual-site, paired-pulse TMS. Consistent with previous findings, we found that MEPs were inhibited when the conditioning stimulus over hV6A preceded the test stimulus over M1 by 12 ms, highlighting inhibitory hV6A-M1 causal interactions. We then manipulated the hV6A-M1 circuit via ccPAS using different inter-stimulus intervals (ISI) never tested before. Our results revealed a time-dependent modulation. Specifically, only when the conditioning stimulus preceded the test one by 12 ms did we find a gradual increase of MEP amplitude during ccPAS, and excitatory aftereffects. In contrast, when ccPAS was applied with an ISI of 4 ms or 500 ms, no corticospinal excitability changes were observed, suggesting that temporal specificity is a critical factor in modulating the hV6A-M1 network. These results suggest that ccPAS can induce time-dependent Hebbian plasticity in the dorsomedial parieto-frontal network at rest, offering novel insights into the network's plasticity and temporal dynamics.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna Italy.
| | - Riccardo Brandolani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna Italy; University of Camerino, Center for Neuroscience, 62032 Camerino Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna Italy
| | - Alessio Avenanti
- Center for studies and research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", University of Bologna, Cesena Campus, Viale Rasi e Spinelli 176, 47521 Cesena, Italy; Center for research in Neuropsychology and Cognitive Neurosciences (CINPSI Neurocog), Catholic University of Maule, 3460000 Talca, Chile
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126 Bologna Italy
| |
Collapse
|
2
|
Goldenkoff ER, Deluisi JA, Brissenden JA, Lee TG, Polk TA, Taylor SF, Hampstead BM, Vesia M. Repeated spaced paired-associative stimulation to the parietal-motor pathway maintains corticomotor excitability in older adults. Clin Neurophysiol 2025; 173:76-85. [PMID: 40085997 PMCID: PMC12058389 DOI: 10.1016/j.clinph.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION Cortical paired associative stimulation (cPAS), repeated at spaced intervals and applied to the primary motor cortex (M1) and posterior parietal cortex (PPC), has a dose-dependent effect on corticomotor excitability in young adults. The present study investigated whether aging affects this additive (nonhomeostatic) metaplasticity by performing the same manipulation in a sample of older adults. METHODS In the multi-dose cPAS condition, three consecutive sessions of the Hebbian-plasticity-induction cPAS protocol were administered with a 50-minute interval between sessions. In the single-dose control cPAS condition, one session of the Hebbian-plasticity-induction cPAS protocol was followed by two sessions of a control non-Hebbian cPAS protocol. We measured motor-evoked potentials (MEPs) before and after each cPAS session. RESULTS Compared to a single dose of cPAS, the multi-dose cPAS protocol prevented the reduction in MEP amplitude, resulting in relatively greater corticomotor excitability following the Hebbian procedures. We did not find evidence for an increase in MEP amplitude after the repeated, spaced Hebbian-plasticity-induction cPAS protocol from baseline levels, suggesting reduced neuroplasticity in older adults compared to young adults. CONCLUSION Repeated spaced paired-associative stimulation to the parietal-motor pathway maintains corticomotor excitability in older adults. SIGNIFICANCE These findings provide insight into age-related differences in neuroplastic capacity in healthy humans.
Collapse
Affiliation(s)
| | | | | | - Taraz G Lee
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Benjamin M Hampstead
- Department of Psychiatry, University of Michigan, Ann Arbor, USA; Department of Neurology, University of Michigan, Ann Arbor, USA
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
3
|
Chiappini E, Turrini S, Fiori F, Benassi M, Tessari A, di Pellegrino G, Avenanti A. You Are as Old as the Connectivity You Keep: Distinct Neurophysiological Mechanisms Underlying Age-Related Changes in Hand Dexterity and Strength. Arch Med Res 2025; 56:103031. [PMID: 39567344 DOI: 10.1016/j.arcmed.2024.103031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Aging can lead to a decline in motor control. While age-related motor impairments have been documented, the underlying changes in cortico-cortical interactions remain poorly understood. METHODS We took advantage of the high temporal resolution of dual-site transcranial magnetic stimulation (dsTMS) to investigate how communication between higher-order rostral premotor regions and the primary motor cortex (M1) influences motor control in young and elderly adults. We assessed the dynamics of connectivity from the inferior frontal gyrus (IFG) or pre-supplementary motor area (preSMA) to M1, by testing how conditioning of the IFG/preSMA affected the amplitude of motor evoked potentials (MEPs) induced by M1 stimulation at different temporal intervals. Moreover, we explored how age-related changes in premotor-M1 interactions relate to motor performance. RESULTS Our results show that both young and elderly adults had excitatory IFG-M1 and preSMA-M1 interactions, but the two groups' timing and strength differed. In young adults, IFG-M1 interactions were early and time-specific (8 ms), whereas in older individuals, they were delayed and more prolonged (12-16 ms). PreSMA-M1 interactions emerged early (6 ms) and peaked at 10-12 ms in young individuals but were attenuated in older individuals. Critically, a connectivity profile of the IFG-M1 circuit like that of the young cohort predicted better dexterity in older individuals, while preserved preSMA-M1 interactions predicted greater strength, suggesting that age-related motor decline is associated with specific changes in premotor-motor networks. CONCLUSIONS Preserving youthful motor network connectivity in older individuals is related to maintaining motor performance and providing information for interventions targeting aging effects on behavior.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy; NeXT: Unità di Ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Dipartimento di Medicina, Università Campus Bio-Medico, Rome, Italy
| | - Mariagrazia Benassi
- Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Alessia Tessari
- Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giuseppe di Pellegrino
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca, Chile.
| |
Collapse
|
4
|
Di Luzio P, Brady L, Turrini S, Romei V, Avenanti A, Sel A. Investigating the effects of cortico-cortical paired associative stimulation in the human brain: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 167:105933. [PMID: 39481669 DOI: 10.1016/j.neubiorev.2024.105933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Recent decades have witnessed a rapid development of novel neuromodulation techniques that allow direct manipulation of cortical pathways in the human brain. These techniques, known as cortico-cortical paired stimulation (ccPAS), apply magnetic stimulation over two cortical regions altering interregional connectivity. This review evaluates ccPAS's effectiveness to induce plastic changes in cortical pathways in the healthy brain. A systematic database search identified 41 studies investigating the effect of ccPAS on neurophysiological or behavioural measures, and a subsequent multilevel meta-analysis focused on the standardized mean differences to assess ccPAS's efficacy. Most studies report significant neurophysiological and behavioural changes from ccPAS interventions across several brain networks, consistently showing medium effect sizes. Moderator analyses revealed limited influence of experimental manipulations on effect sizes. The multivariate approach and lack of small-study bias suggest reliable effect estimates. ccPAS is a promising tool to manipulate neuroplasticity in cortical pathways, showing reliable effects on brain cortical networks. Important areas for further research on the influence of experimental procedures and the potential of ccPAS for clinical interventions are highlighted.
Collapse
Affiliation(s)
- Paolo Di Luzio
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; Essex ESNEFT Psychological Research Unit for Behaviour, Health and Wellbeing, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | - Laura Brady
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Sonia Turrini
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum-Università di Bologna, Campus di Cesena, Via Rasi e Spinelli 176, Cesena 47521, Italy
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum-Università di Bologna, Campus di Cesena, Via Rasi e Spinelli 176, Cesena 47521, Italy; Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid 28015, Spain
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum-Università di Bologna, Campus di Cesena, Via Rasi e Spinelli 176, Cesena 47521, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca 3460000, Chile
| | - Alejandra Sel
- Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; Essex ESNEFT Psychological Research Unit for Behaviour, Health and Wellbeing, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
5
|
Chiappini E, Turrini S, Zanon M, Marangon M, Borgomaneri S, Avenanti A. Driving Hebbian plasticity over ventral premotor-motor projections transiently enhances motor resonance. Brain Stimul 2024; 17:211-220. [PMID: 38387557 DOI: 10.1016/j.brs.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Making sense of others' actions relies on the activation of an action observation network (AON), which maps visual information about observed actions onto the observer's motor system. This motor resonance process manifests in the primary motor cortex (M1) as increased corticospinal excitability finely tuned to the muscles engaged in the observed action. Motor resonance in M1 is facilitated by projections from higher-order AON regions. However, whether manipulating the strength of AON-to-M1 connectivity affects motor resonance remains unclear. METHODS We used transcranial magnetic stimulation (TMS) in 48 healthy humans. Cortico-cortical paired associative stimulation (ccPAS) was administered over M1 and the ventral premotor cortex (PMv), a key AON node, to induce spike-timing-dependent plasticity (STDP) in the pathway connecting them. Single-pulse TMS assessed motor resonance during action observation. RESULTS Before ccPAS, action observation increased corticospinal excitability in the muscles corresponding to the observed movements, reflecting motor resonance in M1. Notably, ccPAS aimed at strengthening projections from PMv to M1 (PMv→M1) induced short-term enhancement of motor resonance. The enhancement specifically occurred with the ccPAS configuration consistent with forward PMv→M1 projections and dissipated 20 min post-stimulation; ccPAS administered in the reverse order (M1→PMv) and sham stimulation did not affect motor resonance. CONCLUSIONS These findings provide the first evidence that inducing STDP to strengthen PMv input to M1 neurons causally enhances muscle-specific motor resonance in M1. Our study sheds light on the plastic mechanisms that shape AON functionality and demonstrates that exogenous manipulation of AON connectivity can influence basic mirror mechanisms that underlie social perception.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Clinical and Health Psychology, University of Vienna, 1010, Vienna, Austria; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany.
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, United States
| | - Marco Zanon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Neuroscience Area, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Mattia Marangon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Dipartimento di Neuroscienze, Biomedicina e Scienze del Movimento, Sezione di Fisiologia e Psicologia, Università di Verona, 37124, Verona, Italy
| | - Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, 346000, Talca, Chile.
| |
Collapse
|
6
|
San Agustín A, Veniero D, Pons JL, Hernandez-Pavon JC. Reply to "Understanding the sources of cortico-cortical paired associative stimulation (ccPAS) variability: Unraveling target-specific and state-dependent influences". Clin Neurophysiol 2023; 156:293-294. [PMID: 37838615 DOI: 10.1016/j.clinph.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Affiliation(s)
- Arantzazu San Agustín
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid 28029, Spain.
| | | | - Jose L Pons
- Legs + Walking Lab, Shirley Ryan AbilityLab (Formerly, The Rehabilitation Institute of Chicago), Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|