1
|
Rose F, Köberle B, Honnen S, Bay C, Burhenne J, Weiss J, Haefeli WE, Theile D. RNA is a pro-apoptotic target of cisplatin in cancer cell lines and C. elegans. Biomed Pharmacother 2024; 173:116450. [PMID: 38503239 DOI: 10.1016/j.biopha.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Cisplatin not only targets DNA but also RNA. However, it is largely unknown whether platinated RNA (Pt-RNA) causes apoptosis and thus contributes to the cytotoxic effects of cisplatin. Consequently, cellular RNA was isolated from HepG2 and LS180 cells, exposed to cisplatin, and the resulting Pt-RNA (20 ng Pt/µg RNA) was transfected into these cancer cell lines or used to treat an apoptosis reporter Caenorhabditis elegans (C. elegans) strain (MD701, expressing CED-1::GFP). Cellular and molecular effects of Pt-RNA were evaluated by luminogenic caspase 3/7 assays, PCR array analysis, and fluorescence microscopy-based quantification of apoptosis in C. elegans gonads. Assuming RNA cross-linking (pseudo double-stranded RNA), the contribution of the Toll-like receptor 3 (TLR3, a sensor of double-stranded RNA) to apoptosis induction in cancer cell lines was investigated by pharmacological TLR3 inhibition and overexpression. In contrast to controls, Pt-RNA significantly enhanced apoptosis in C. elegans (2-fold) and in the cancer cell lines (2-fold to 4-fold). TLR3 overexpression significantly enhanced the pro-apoptotic effects of Pt-RNA in HepG2 cells. TLR3 inhibition reduced the pro-apoptotic effects of Pt-RNA and cisplatin, but not of paclitaxel (off-target control). Gene expression analysis showed that Pt-RNA (but not RNA) significantly enhanced the mRNA levels of nuclear factor kappa B subunit 2 and interleukin-8 in HepG2 cells, suggesting that Pt-RNA is a damage-associated molecular pattern that additionally causes pro-inflammatory responses. Together, this data suggests that not only DNA but also cellular RNA is a functionally relevant target of cisplatin, leading to pro-apoptotic and immunogenic effects.
Collapse
Affiliation(s)
- Fabian Rose
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Beate Köberle
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20A, Karlsruhe 76131, Germany
| | - Sebastian Honnen
- Institute of Toxicology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Cindy Bay
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Jürgen Burhenne
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Johanna Weiss
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Walter E Haefeli
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Dirk Theile
- University of Heidelberg, Medical Faculty of Heidelberg, Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany.
| |
Collapse
|
2
|
Zhang X, Chen X, Lu L, Fang Q, Liu C, Lin Z. Identification of small-molecule inhibitors of human MUS81-EME1/2 by FRET-based high-throughput screening. Bioorg Med Chem 2023; 90:117383. [PMID: 37352577 DOI: 10.1016/j.bmc.2023.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
The MUS81-EME1/2 structure-specific endonucleases play a crucial role in the processing of stalled replication forks and recombination intermediates, and have been recognized as an attractive drug target to potentiate the anti-cancer efficacy of DNA-damaging agents. Currently, no bioactive small-molecule inhibitors of MUS81 are available. Here, we performed a high-throughput small-molecule inhibitors screening, using the FRET-based DNA cleavage assay. From 7920 compounds, we identified dyngo-4a as a potent inhibitor of MUS81 complexes. Dyngo-4a effectively inhibits the endonuclease activities of both MUS81-EME1 and MUS81-EME2 complexes, with IC50 values of 0.57 μM and 2.90 μM, respectively. Surface plasmon resonance (SPR) and electrophoretic mobility shift assay (EMSA) assays reveal that dyngo-4a directly binds to MUS81 complexes (KD ∼ 0.61 μM) and prevents them from binding to DNA substrates. In HeLa cells, dyngo-4a significantly suppresses bleomycin-triggered H2AX serine 139 phosphorylation (γH2AX). Together, our results demonstrate that dyngo-4a is a potent MUS81 inhibitor, which could be further developed as a potentially valuable chemical tool to explore more physiological roles of MUS81 in the cells.
Collapse
Affiliation(s)
- Xu Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xuening Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lian Lu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Qianqian Fang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chun Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhonghui Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, China; Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, China.
| |
Collapse
|
3
|
Ngo ST, Vu KB, Pham MQ, Tam NM, Tran PT. Marine derivatives prevent wMUS81 in silico studies. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210974. [PMID: 34527278 PMCID: PMC8424343 DOI: 10.1098/rsos.210974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 05/15/2023]
Abstract
The winged-helix domain of the methyl methanesulfonate and ultraviolet-sensitive 81 (wMUS81) is a potential cancer drug target. In this context, marine fungi compounds were indicated to be able to prevent wMUS81 structure via atomistic simulations. Eight compounds such as D197 (Tryptoquivaline U), D220 (Epiremisporine B), D67 (Aspergiolide A), D153 (Preussomerin G), D547 (12,13-dihydroxyfumitremorgin C), D152 (Preussomerin K), D20 (Marinopyrrole B) and D559 (Fumuquinazoline K) were indicated that they are able to prevent the conformation of wMUS81 via forming a strong binding affinity to the enzyme via perturbation approach. The electrostatic interaction is the dominant factor in the binding process of ligands to wMUS81. The residues Trp55, Arg59, Leu62, His63 and Arg69 were found to frequently form non-bonded contacts and hydrogen bonds to inhibitors. Moreover, the influence of the ligand D197, which formed the lowest binding free energy to wMUS81, on the structural change of enzyme was investigated using replica exchange molecular dynamics simulations. The obtained results indicated that D197, which forms a strong binding affinity, can modify the structure of wMUS81. Overall, the marine compounds probably inhibit wMUS81 due to forming a strong binding affinity to the enzyme as well as altering the enzymic conformation.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Khanh B. Vu
- Department of Chemical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Minh Tam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong-Thao Tran
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| |
Collapse
|
4
|
Wu F, Zhang FY, Tan GQ, Chen WJ, Huang B, Yan L, Zhang HL, Chen S, Jiao Y, Wang BL. Down-regulation of EGFL8 regulates migration, invasion and apoptosis of hepatocellular carcinoma through activating Notch signaling pathway. BMC Cancer 2021; 21:704. [PMID: 34130659 PMCID: PMC8207656 DOI: 10.1186/s12885-021-08327-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Our previous studies have reported the down-regulation of EGFL8 correlates to the development and prognosis of colorectal and gastric cancer. The present study is carried out to explore the expression pattern and role of EGFL8 in hepatocellular carcinoma (HCC). METHODS AND MATERIALS EGFL8 expression in 102 cases of HCC tissues matched with adjacent non-tumorous liver tissues, a normal liver cell line and three liver cancer cell lines with different metastatic capacity was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot. Moreover, the clinicopathological features and prognosis of HCC patients were correlated with expression of EGFL8. Subsequently, the gain-and loss-of-function experiments were carried out to investigate the biological function of EGFL8 in HCC. We also used N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-(S)- phenylglycine t-butyl ester (DAPT), an inhibitor for Notch signaling pathway, in these experiments to verify the involvement of Notch signaling pathway in the effects of EGFL8. Additionally, a mouse model was established to investigate the effect of EGFL8 on metastasis of HCC cells. The expression of Notch signaling pathway in HCC cells and xenograft mouse tumors were detected by Western blot and immunohistochemistory. RESULTS The expression of EGFL8 was significantly decreased in HCC tissues and cell lines and EGFL8 down-regulation correlated to multiple nodules, vein invasion, high TNM stage and poor prognosis of HCC. Interestingly, the expression levels of EGFL8 in three liver cancer cell lines were negatively associated with their metastatic capacity. In vitro and in vivo experiments indicated that EGFL8 obviously suppressed metastasis and invasion of HCC cells but slightly promoted apoptosis. Meanwhile, the expression of Notch signaling pathway was obviously suppressed in EGFL8 overexpressed HCCLM3 cells and xenograft mouse tumors generated from these cells but markedly elevated in EGFL8 depleted Hep3B cells. Furthermore, the up-regulated expression of Notch signaling pathway and effects induced by EGFL8 knockdown in Hep3B cells could be counteracted by DAPT treatment. CONCLUSION The down-regulation of EGFL8 was correlated to progression and poor prognosis of HCC and regulates HCC cell migration, invasion and apoptosis through activating the Notch signaling pathway, suggesting EGFL8 as a novel therapeutic target and a potential prognostic marker for HCC.
Collapse
Affiliation(s)
- Fan Wu
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, People's Republic of China
| | - Fang-Yong Zhang
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, People's Republic of China
| | - Guo-Qian Tan
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, People's Republic of China
| | - Wei-Jia Chen
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, People's Republic of China
| | - Biao Huang
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, People's Republic of China
| | - Lun Yan
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, People's Republic of China
| | - Hao-Lu Zhang
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, People's Republic of China
| | - Shi Chen
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, People's Republic of China
| | - Yang Jiao
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, People's Republic of China
| | - Bai-Lin Wang
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Tongfu Roud 396, Guangzhou, 510220, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Ngo ST, Vu VV, Phung HTT. Computational investigation of possible inhibitors of the winged-helix domain of MUS81. J Mol Graph Model 2020; 103:107771. [PMID: 33340918 DOI: 10.1016/j.jmgm.2020.107771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 01/01/2023]
Abstract
The methyl methanesulfonate and ultraviolet sensitive 81 (MUS81) is a structure-specific endonuclease that is highly conserved in eukaryotes and essential for homologous recombination repair. The winged-helix domain at the N-terminus of MUS81 (wMUS81) can bind DNA substrates and regulate the endonuclease activity. The repression of MUS81 activity could enhance the sensitivity to antitumor compounds of different tumour cells. Thus, MUS81 is a potential therapeutic target in cancer therapy. However, specific inhibitors of MUS81 have remained elusive. Here, for the first time, we attempt to discover the compounds disrupting the wMUS81 activity. The binding affinity of available drugs to wMUS81 was first estimated by molecular docking. pKa values were taken into consideration to eliminate unlikely protonation states of the ligands. Top-lead compounds were then estimated the binding affinity using the fast pulling ligand simulations. Finally, the free energy perturbation method accurately defined the absolute binding free energy of the top four ligands, revealing the most potential inhibitors of wMUS81 including simeprevir and nilotinib. Binding of simeprevir destabilizes the β-hairpin region of wMUS81, likely disturbing the wMUS81 function. The van der Waals free binding energy majorly modulates the ligand-binding mechanism. The two conserved residues Leu189 and Arg196 are likely important in monitoring the interacting process of simeprevir to wMUS81.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam.
| | - Van Van Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Huong Thi Thu Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam.
| |
Collapse
|
6
|
Santos SM, Hartman JL. A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin. Cancer Metab 2019; 7:9. [PMID: 31660150 PMCID: PMC6806529 DOI: 10.1186/s40170-019-0201-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. METHODS Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. RESULTS Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. We analyzed human homologs of yeast genes exhibiting gene-doxorubicin interaction in cancer pharmacogenomics data to predict causality for differential gene expression associated with doxorubicin cytotoxicity in cancer cells. This analysis suggested conserved cellular responses to doxorubicin due to influences of homologous recombination, sphingolipid homeostasis, telomere tethering at nuclear periphery, actin cortical patch localization, and other gene functions. CONCLUSIONS Warburg status alters the genetic network required for yeast to buffer doxorubicin toxicity. Integration of yeast phenomic and cancer pharmacogenomics data suggests evolutionary conservation of gene-drug interaction networks and provides a new experimental approach to model their influence on chemotherapy response. Thus, yeast phenomic models could aid the development of precision oncology algorithms to predict efficacious cytotoxic drugs for cancer, based on genetic and metabolic profiles of individual tumors.
Collapse
Affiliation(s)
- Sean M. Santos
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| | - John L. Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
7
|
Yin Y, Liu W, Shen Q, Zhang P, Wang L, Tao R, Li H, Ma X, Zeng X, Cheong JH, Song S, Ajani JA, Mills GB, Tao K, Peng G. The DNA Endonuclease Mus81 Regulates ZEB1 Expression and Serves as a Target of BET4 Inhibitors in Gastric Cancer. Mol Cancer Ther 2019; 18:1439-1450. [PMID: 31142662 DOI: 10.1158/1535-7163.mct-18-0833] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/09/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
DNA replication and repair proteins play an important role in cancer initiation and progression by affecting genomic instability. The DNA endonuclease Mus81 is a DNA structure-specific endonuclease, which has been implicated in DNA replication and repair. In this study, we found that Mus81 promotes gastric metastasis by controlling the transcription of ZEB1, a master regulator of the epithelial-mesenchymal transition (EMT). Our results revealed that Mus81 is highly expressed in gastric cancer samples from patients and cell lines compared with their normal counterparts. Particularly, Mus81 expression positively correlated with ZEB1 expression and Mus81 overexpression was significantly associated with higher incidence of lymph node metastasis in patients. Furthermore, Mus81 promoted migration of gastric cancer cells both in vitro and in vivo We conducted a drug screen using a collection of preclinical and FDA-approved drugs and found that the BRD4 inhibitor AZD5153 inhibited the expression of Mus81 and ZEB1 by regulating the epigenetic factor Sirt5. As expected, AZD5153 treatment significantly reduced the migration of gastric cancer cells overexpressing Mus81 in vitro and in vivo Collectively, we show that Mus81 is a regulator of ZEB1 and promotes metastasis in gastric cancer. Importantly, we demonstrate that the BRD4 inhibitor AZD5153 can potentially be used as an effective antimetastasis drug because of its effect on Mus81.
Collapse
Affiliation(s)
- Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Shen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Wang
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ruikang Tao
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California
| | - Hang Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jae-Ho Cheong
- Institute for Personalized Cancer Therapy, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Precision Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Guang Peng
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
8
|
Zhong A, Zheng H, Zhang H, Sun J, Shen J, Deng M, Chen M, Lu R, Guo L. MUS81 Inhibition Increases the Sensitivity to Therapy Effect in Epithelial Ovarian Cancer via Regulating CyclinB Pathway. J Cancer 2019; 10:2276-2287. [PMID: 31258731 PMCID: PMC6584407 DOI: 10.7150/jca.30818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/31/2019] [Indexed: 12/18/2022] Open
Abstract
MUS81 is a key endonuclease involved in homologous recombination (HR) repair after DNA double-strand damage. Structure-specific endonucleases (SSEs) plays a crucial role in DNA replication, repair and transcription, and SSEs are also important for maintaining the secondary structure of DNA; therefore, their activity must be precisely controlled to ensure genome stability. We previously described that MUS81 expression was significantly correlated with CyclinB expression based on protein microarray analysis. CyclinB is a cell-cycle regulatory protein that has been shown to be involved in the activation of DNA damage repair checkpoints by inducing G2/M phase arrest, promoting apoptosis, and participating in the regulation of chemotherapeutic drug sensitivity by inducing nuclear degradation, as shown by immunofluorescence assays. In this study, MUS81-downregulated cells were generated using lentivirus-mediated RNAi. Our results demonstrated that the inhibition of MUS81 expression activated the CHK1 and CyclinB signaling pathways and sensitized ovarian cancer cells to X-ray and Olaparib treatment both in vitro and in vivo. MUS81 may be a potential therapeutic target for epithelial ovarian cancer (EOC).
Collapse
Affiliation(s)
- Ailing Zhong
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - Hongqin Zhang
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - Jiajun Sun
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - Jiabin Shen
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - Minjie Deng
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China
| | - Miaomiao Chen
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai, Medical College, Fudan University, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai, Medical College, Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University, Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai, Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Kim SM, Forsburg SL. Regulation of Structure-Specific Endonucleases in Replication Stress. Genes (Basel) 2018; 9:genes9120634. [PMID: 30558228 PMCID: PMC6316474 DOI: 10.3390/genes9120634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
Abstract
Replication stress results in various forms of aberrant replication intermediates that need to be resolved for faithful chromosome segregation. Structure-specific endonucleases (SSEs) recognize DNA secondary structures rather than primary sequences and play key roles during DNA repair and replication stress. Holliday junction resolvase MUS81 (methyl methane sulfonate (MMS), and UV-sensitive protein 81) and XPF (xeroderma pigmentosum group F-complementing protein) are a subset of SSEs that resolve aberrant replication structures. To ensure genome stability and prevent unnecessary DNA breakage, these SSEs are tightly regulated by the cell cycle and replication checkpoints. We discuss the regulatory network that control activities of MUS81 and XPF and briefly mention other SSEs involved in the resolution of replication intermediates.
Collapse
Affiliation(s)
- Seong Min Kim
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Aghazadeh Attari J, Yousefi B, Majidinia M. DNA damage response and repair in colorectal cancer: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2018; 69:34-52. [PMID: 30055507 DOI: 10.1016/j.dnarep.2018.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
Abstract
DNA damage response, a key factor involved in maintaining genome integrity and stability, consists of several kinase-dependent signaling pathways, which sense and transduce DNA damage signal. The severity of damage appears to determine DNA damage responses, which can include cell cycle arrest, damage repair and apoptosis. A number of recent studies have demonstrated that defection in signaling through this network is thought to be an underlying mechanism behind the development and progression of various types of human malignancies, including colorectal cancer. In this review, colorectal cancer and its molecular pathology as well as DNA damage response is briefly introduced. Finally, the involvement of key components of this network in the initiation/progression, prognosis, response to treatment and development of drug resistance is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Ainaz Mihanfar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|