1
|
Henick BS, Taylor AM, Nakagawa H, Wong KK, Diehl JA, Rustgi AK. Squamous cell cancers of the aero-upper digestive tract: A unified perspective on biology, genetics, and therapy. Cancer Cell 2025; 43:178-194. [PMID: 39933897 PMCID: PMC11875029 DOI: 10.1016/j.ccell.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Squamous cell cancers (SCCs) of the head and neck, esophagus, and lung, referred to as aero-upper digestive SCCs, are prevalent in the United States and worldwide. Their incidence and mortality are projected to increase at alarming rates, posing diagnostic, prognostic, and therapeutic challenges. These SCCs share certain epigenetic, genomic, and genetic alterations, immunologic properties, environmental exposures, as well as lifestyle and nutritional risk factors, which may underscore common complex gene-environmental interactions across them. This review focuses upon the frequent shared epigenetic, genomic, and genetic alterations, emerging preclinical model systems, and how this collective knowledge can be leveraged into perspectives on standard of care therapies and mechanisms of resistance, nominating new potential directions in translational therapeutics.
Collapse
Affiliation(s)
- Brian S Henick
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Hematology-Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kwok-Kin Wong
- Division of Hematology-Oncology, Department of Medicine, NYU Perlmutter Cancer Center, New York, NY, USA
| | - J Alan Diehl
- Department of Biochemistry, Case Western Reserve Comprehensive Cancer Center, Cleveland, OH, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Herreros-Pomares A, Doria P, Gallach S, Meri-Abad M, Guijarro R, Calabuig-Fariñas S, Camps C, Jantus-Lewintre E. A Sonic Hedgehog Pathway Score to Predict the Outcome of Resected Non-Small Cell Lung Cancer Patients. Ann Surg Oncol 2023; 30:1225-1235. [PMID: 36131117 DOI: 10.1245/s10434-022-12565-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/28/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Mutations and deregulations in components of the Hedgehog (Hh) pathway have been associated with cancer onset and tumor growth in different malignancies, but their role in non-small cell lung cancer (NSCLC) remains unclear. This study aims to investigate the expression pattern of the main components of the Hh pathway in tumor and adjacent normal tissue biopsies of resected NSCLC patients. METHODS The relative expression of GLI1, PTCH1, SHH, and SMO was analyzed by quantitative polymerase chain reaction (PCR) in a cohort of 245 NSCLC patients. Results were validated in an independent cohort of NSCLC patients from The Cancer Genome Atlas (TCGA). RESULTS We found that SMO and GLI1 were overexpressed in the tumor compared with normal-paired tissue, whereas PTCH1 and SHH were underexpressed. In addition, patients with higher expression levels of PTCH1 presented better outcomes. A gene expression score, called the Hedgehog Score, was calculated using a multivariable model including analyzed components of the Hh signaling pathway. NSCLC patients with a high Hedgehog Score had significantly shorter relapse-free survival (RFS) and overall survival (OS) than patients with a low score, especially at stage I of the disease. Similarly, patients in the adenocarcinoma (ADC) subcohort had shorter RFS and OS. Multivariate Cox analysis exhibited that the Hedgehog Score is an independent prognostic biomarker for OS in both the entire training cohort and the ADC subcohort. The Hedgehog Score was validated in an independent cohort of NSCLC patients from TCGA, which confirmed its prognostic value. CONCLUSIONS Our results provide relevant prognostic data for NSCLC patients and support further studies on the Hh pathway.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain. .,Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain.
| | | | - Sandra Gallach
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain.,Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain.,TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Marina Meri-Abad
- Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain
| | - Ricardo Guijarro
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain.,TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain.,Department of Surgery, Universitat de València, Valencia, Spain.,Department of Thoracic Surgery, Hospital General Universitario de Valencia, Valencia, Spain
| | - Silvia Calabuig-Fariñas
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain.,Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain.,TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain.,Department of Pathology, Universitat de València, Valencia, Spain
| | - Carlos Camps
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain.,Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain.,TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain.,Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Eloísa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain. .,Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain. .,Molecular Oncology Laboratory, Fundación Investigación Hospital General Universitario de Valencia, Valencia, Spain. .,TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación Investigación del Hospital General Universitario de Valencia, Valencia, Spain.
| |
Collapse
|
3
|
Dai Y, Liu P, He W, Yang L, Ni Y, Ma X, Du F, Song C, Liu Y, Sun Y. Genomic Features of Solid Tumor Patients Harboring ALK/ROS1/NTRK Gene Fusions. Front Oncol 2022; 12:813158. [PMID: 35785159 PMCID: PMC9243239 DOI: 10.3389/fonc.2022.813158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The fusions of receptor tyrosine kinase (RTK) involving anaplastic lymphoma kinase (ALK), c-ros oncogene 1 (ROS1), and neurotrophic receptor tyrosine kinase (NTRK) represent the potential targets of therapeutic intervention for various types of solid tumors. Here, the genomic features of 180 Chinese solid tumor patients with ALK, ROS1, and NTRK fusions by next generation sequencing (NGS) were comprehensively characterized, and the data from 121 patients in Memorial Sloan Kettering Cancer Center (MSKCC) database were used to compare. We found that ALK, ROS1, and NTRK fusions were more common in younger female patients (p<0.001) and showed a higher expression of programmed death ligand 1 (PD-L1). The gene-intergenic fusion and the fusion with rare formation directions accounted for a certain proportion in all samples and 62 novel fusions were discovered. Alterations in TP53 and MUC16 were common in patients with RTK fusions. The mutational signatures of patients were mainly distributed in COSMIC signature 1, 2, 3, 15 and 30, while had a higher frequency in copy number variations (CNVs) of individual genes, such as IL-7R. In the MSKCC cohort, patients with fusions and CNVs showed shorter overall survival than those with only fusions. Furthermore, the differentially mutated genes between fusion-positive and -negative patients mainly concentrated on MAPK signaling and FOXO signaling pathways. These results may provide genomic information for the personalized clinical management of solid tumor patients with ALK, ROS1, and NTRK fusions in the era of precision medicine.
Collapse
Affiliation(s)
- Yinghuan Dai
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenlong He
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lizhen Yang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Ni
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- Department of Medicine, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Xuejiao Ma
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- Department of Medicine, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Furong Du
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- Department of Medicine, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Chao Song
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- Department of Medicine, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
- *Correspondence: Yi Sun, ; Yang Liu, ; Chao Song,
| | - Yang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yi Sun, ; Yang Liu, ; Chao Song,
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yi Sun, ; Yang Liu, ; Chao Song,
| |
Collapse
|
4
|
Weng X, Zeng L, Yan F, He M, Wu X, Zheng D. Cyclin-dependent kinase inhibitor 2B gene is associated with the sensitivity of hepatoma cells to Sorafenib. Onco Targets Ther 2019; 12:5025-5036. [PMID: 31388306 PMCID: PMC6607202 DOI: 10.2147/ott.s196607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/06/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose: The sensitivity of advanced hepatocellular carcinoma (HCC) to Sorafenib is low. The purpose of this study was to investigate the effects of cyclin-dependent kinase inhibitor 2B (CDKN2B) gene on the prognosis of HCC and the sensitivity of HCC cells to Sorafenib. Patients and methods: Streptavidin-perosidase (SP) staining was performed to determine the expression of CDKN2B in HCC tissues and adjacent tissues. The cell counting kit-8 (CCK-8) assay was carried out to determine cell viability. CDKN2B mRNA and protein were tested by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. CDKN2B gene was silenced or over-expressed in the cells by plasmid transfection technique. Flow cytometry was carried out to detect cell cycle and apoptosis. Results: SP staining results showed that CDKN2B was positive in adjacent tissues and in HCC tissues from partial response (PR) patients, CDKN2B was slightly positive in stable disease (SD) patients, but negative in progression disease (PD) patients. The survival rate of patients with low expression of CDKN2B was low. Up-regulation of CDKN2B expression could promote the pro-apoptotic effect of Sorafenib and cell arrest in G1 phase. When the CDKN2B gene expression was down-regulated, the cell apoptosis rate and the proportion of cells treated with Sorafenib in G1 phase decreased. Silencing CDKN2B reversed CDKN2B overexpression caused by Sorafenib. Conclusion: CDKN2B genes were lowly expressed in tumor tissues from HCC patients who were treated with Sorafenib and had a poor prognosis. Up-regulation of CDKN2B promoted sensitivity of HCC to Sorafenib, and similarly down-regulation of CDKN2B reduced the sensitivity.
Collapse
Affiliation(s)
- Xie Weng
- Department of Cancer Center,TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong Province510310, People’s Republic of China
| | - Lixian Zeng
- Department of Cancer Center,TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong Province510310, People’s Republic of China
| | - Feifei Yan
- Department of Cancer Center,TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong Province510310, People’s Republic of China
| | - Mengxue He
- Department of Cancer Center,TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong Province510310, People’s Republic of China
| | - Xiuqiong Wu
- Department of Cancer Center,TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong Province510310, People’s Republic of China
| | - Dayong Zheng
- Department of Cancer Center,TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong Province510310, People’s Republic of China
| |
Collapse
|
5
|
Sato M. Specific copy number changes as potential predictive markers for adjuvant chemotherapy in non-small cell lung cancer. Transl Lung Cancer Res 2019; 7:S346-S348. [PMID: 30705851 DOI: 10.21037/tlcr.2018.11.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mitsuo Sato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Ramsey J, Butnor K, Peng Z, Leclair T, van der Velden J, Stein G, Lian J, Kinsey CM. Loss of RUNX1 is associated with aggressive lung adenocarcinomas. J Cell Physiol 2018; 233:3487-3497. [PMID: 28926105 PMCID: PMC5989135 DOI: 10.1002/jcp.26201] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
The mammalian runt-related factor 1 (RUNX1) is a master transcription factor that regulates lineage specification of hematopoietic stem cells. RUNX1 translocations result in the development of myeloid leukemias. Recently, RUNX1 has been implicated as a tumor suppressor in other cancers. We postulated RUNX1 expression may be associated with lung adenocarcinoma etiology and/or progression. We evaluated the association of RUNX1 mRNA expression with overall survival data from The Cancer Genome Atlas (TCGA), a publically available database. Compared to high expression levels, Low RUNX1 levels from lung adenocarcinomas were associated with a worse overall survival (Hazard Ratio = 2.014 (1.042-3.730 95% confidence interval), log-rank p = 0.035) compared to those that expressed high RUNX1 levels. Further immunohistochemical examination of 85 surgical specimens resected at the University of Vermont Medical Center identified that low RUNX1 protein expression was associated with larger tumors (p = 0.038). Gene expression network analysis was performed on the same subset of TCGA cases that demonstrated differential survival by RUNX1 expression. This analysis, which reveals regulatory relationships, showed that reduced RUNX1 levels were closely linked to upregulation of the transcription factor E2F1. To interrogate this relationship, RUNX1 was depleted in a lung cancer cell line that expresses high levels of RUNX1. Loss of RUNX1 resulted in enhanced proliferation, migration, and invasion. RUNX1 depletion also resulted in increased mRNA expression of E2F1 and multiple E2F1 target genes. Our data implicate loss of RUNX1 as driver of lung adenocarcinoma aggression, potentially through deregulation of the E2F1 pathway.
Collapse
Affiliation(s)
- Jon Ramsey
- Department of Biochemistry, University of Vermont, Burlington VT
| | - Kelly Butnor
- Department of Pathology, University of Vermont Medical Center, Burlington VT
| | - Zhihua Peng
- Department of Biochemistry, University of Vermont, Burlington VT
| | - Tim Leclair
- Department of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Boston MA
| | - Jos van der Velden
- Department of Pathology, University of Vermont Medical Center, Burlington VT
| | - Gary Stein
- Department of Biochemistry, University of Vermont, Burlington VT
| | - Jane Lian
- Department of Biochemistry, University of Vermont, Burlington VT
| | - C. Matthew Kinsey
- Pulmonary and Critical Care, University of Vermont Medical Center, Burlington VT
| |
Collapse
|
7
|
Sato S, Nagahashi M, Koike T, Ichikawa H, Shimada Y, Watanabe S, Kikuchi T, Takada K, Nakanishi R, Oki E, Okamoto T, Akazawa K, Lyle S, Ling Y, Takabe K, Okuda S, Wakai T, Tsuchida M. Impact of Concurrent Genomic Alterations Detected by Comprehensive Genomic Sequencing on Clinical Outcomes in East-Asian Patients with EGFR-Mutated Lung Adenocarcinoma. Sci Rep 2018; 8:1005. [PMID: 29343775 PMCID: PMC5772517 DOI: 10.1038/s41598-017-18560-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/11/2017] [Indexed: 01/23/2023] Open
Abstract
Next-generation sequencing (NGS) has enabled comprehensive detection of genomic alterations in lung cancer. Ethnic differences may play a critical role in the efficacy of targeted therapies. The aim of this study was to identify and compare genomic alterations of lung adenocarcinoma between Japanese patients and the Cancer Genome Atlas (TCGA), which majority of patients are from the US. We also aimed to examine prognostic impact of additional genomic alterations in patients harboring EGFR mutations. Genomic alterations were determined in Japanese patients with lung adenocarcinoma (N = 100) using NGS-based sequencing of 415 known cancer genes, and correlated with clinical outcome. EGFR active mutations, i.e., those involving exon 19 deletion or an L858R point mutation, were seen in 43% of patients. Some differences in driver gene mutation prevalence were observed between the Japanese cohort described in the present study and the TCGA. Japanese cohort had significantly more genomic alterations in cell cycle pathway, i.e., CDKN2B and RB1 than TCGA. Concurrent mutations, in genes such as CDKN2B or RB1, were associated with worse clinical outcome in patients with EGFR active mutations. Our data support the utility of comprehensive sequencing to detect concurrent genomic variations that may affect clinical outcomes in this disease.
Collapse
Affiliation(s)
- Seijiro Sato
- Division of Thoracic and Cardiovascular Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Terumoto Koike
- Division of Thoracic and Cardiovascular Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Ichikawa
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshifumi Shimada
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Disease, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Disease, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuki Takada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Nakanishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kouhei Akazawa
- Department of Medical Informatics, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Stephen Lyle
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biosciences, the State University of New York, Buffalo, New York, USA
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Masanori Tsuchida
- Division of Thoracic and Cardiovascular Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
8
|
Tian Z, Wen S, Zhang Y, Shi X, Zhu Y, Xu Y, Lv H, Wang G. Identification of dysregulated long non-coding RNAs/microRNAs/mRNAs in TNM I stage lung adenocarcinoma. Oncotarget 2017; 8:51703-51718. [PMID: 28881680 PMCID: PMC5584281 DOI: 10.18632/oncotarget.18512] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/06/2017] [Indexed: 02/07/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the primary subtype in lung cancer, which is the leading cause of cancer-related death worldwide. This study aimed to investigate the aberrant expression profiling of long non-coding RNA (lncRNA) in TNM I stage (stage I) LUAD. The lncRNA/mRNA/miRNA expression profiling of stage I LUAD and adjacent non-tumor tissues from 4 patients were measured by RNA-sequencing. Total of 175 differentially expressed lncRNAs (DELs), 1321 differentially expressed mRNAs (DEMs) and 94 differentially expressed microRNAs (DEMIs) were identified in stage I LUAD. DEMI-DEM regulatory network consisted of 544 nodes and 1123 edge; miR-200 family members had high connectivity with DEMs. In DEL-DEM co-expression network, CDKN2B-AS1, FENDRR and LINC00312 had the high connectivity with DEMs, which co-expressed with 105, 63 and 61 DEMs, respectively. DEL-DEMI-DEM network depicted the links among DELs, DEMI and DEMs. Identified DEMs were significantly enriched in cell adhesion molecules, focal adhesion and tight junction of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways; and enriched in cell adhesion, angiogenesis and regulation of cell proliferation of Gene Ontology biological processes. Quantitative real-time polymerase chain reaction results were generally consistent with our bioinformatics analyses. LINC00312 and FENDRR had diagnostic value for LUAD patients in The Cancer Genome Atlas database. Our study might lay the foundation for illumination of pathogenesis of LUAD and identification of potential therapeutic targets and novel diagnosis biomarkers for LUAD patients.
Collapse
Affiliation(s)
- Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shiwang Wen
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuefeng Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinqiang Shi
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yonggang Zhu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanzhao Xu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huilai Lv
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Zhu M, Geng L, Shen W, Wang Y, Liu J, Cheng Y, Wang C, Dai J, Jin G, Hu Z, Ma H, Shen H. Exome-Wide Association Study Identifies Low-Frequency Coding Variants in 2p23.2 and 7p11.2 Associated with Survival of Non-Small Cell Lung Cancer Patients. J Thorac Oncol 2017; 12:644-656. [PMID: 28104536 DOI: 10.1016/j.jtho.2016.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
Abstract
INTRODUCTION A growing body of evidence has suggested that low-frequency or rare coding variants might have strong effects on the development and prognosis of cancer. Here, we aim to assess the role of low-frequency and rare coding variants in the survival of NSCLC in Chinese populations. METHODS We performed an exome-wide scan of 247,870 variants in 1008 patients with NSCLC and replicated the promising variants by using imputed genotype data of The Cancer Genome Atlas (TCGA) with a Cox regression model. Gene-based and pathway-based analysis were also performed for nonsynonymous or splice site variants. Additionally, analysis of gene expression data in the TCGA was used to increase the reliability of candidate loci and genes. RESULTS A low-frequency missense variant in chaperonin containing TCP1 subunit 6A gene (CCT6A) (rs33922584: adjusted hazard ratio [HRadjusted] = 1.75, p = 6.06 × 10-4) was significantly related to the survival of patients with NSCLC, which was further replicated by the TCGA samples (HRadjusted = 4.19, p = 0.015). Interestingly, the G allele of rs33922584 was significantly associated with high expression of CCT6A (p = 0.019) that might induce the worse survival in the TCGA samples (HRadjusted = 1.15, p = 0.047). Besides, rs117512489 in gene phospholipase B1 gene (PLB1) (HR = 2.02, p = 7.28 × 10-4) was also associated with survival of the patients with NSCLC in our samples, but it was supported only by gene expression analysis in the TCGA (HRadjusted = 1.15, p = 0.023). Gene-based and pathway-based analysis revealed a total of 32 genes, including CCT6A and 34 potential pathways might account for the survival of NSCLC, respectively. CONCLUSION These results provided more evidence for the important role of low-frequency or rare variants in the survival of patients with NSCLC.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Liguo Geng
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wei Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuzhuo Wang
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jia Liu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yang Cheng
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Cheng Wang
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center of Cancer Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Cao Y, Liu Y, Yang X, Liu X, Han N, Zhang K, Lin D. Estimation of the Survival of Patients With Lung Squamous Cell Carcinoma Using Genomic Copy Number Aberrations. Clin Lung Cancer 2015; 17:68-74.e5. [PMID: 26427646 DOI: 10.1016/j.cllc.2015.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 01/25/2023]
Abstract
BACKGROUND Estimation of the survival of patients with lung squamous cell carcinoma (SCC) on the basis of histopathology is inadequate. The aim of this study was to identify genomic regions with potential value for estimating the prognosis of these patients. PATIENTS AND METHODS Depending on their survival time, 100 patients with primary lung SCC were separated into high- or low-risk prognostic groups, and their copy number aberrations (CNAs) were analyzed using array-comparative genomic hybridization (array-CGH). RESULTS We identified 123 CNA regions that were significantly associated with survival. Among these regions, some have been reported previously (eg, amplifications of 8p12, 3q27.1, and loss of 9p21.3 and 13q34) but others have never been reported. For example, gains of 3q27.1, 5p13.2, and 5p13.3 were found to be associated with a favorable prognosis, but patients harboring gains of 11q23.3, 11q13.1, and 14q32.3, and deletions of 3p21.3 and 9p21.3 tended to have poor survival. Among the 123 CNA regions, 41 were further selected to construct a survival estimation model that could effectively separate SCC patients into high- or low-risk groups with an accuracy of 92%, sensitivity of 90%, and specificity of 94%. The results of the array-CGH were further validated in an independent cohort of 45 formalin-fixed, paraffin-embedded specimens using real-time polymerase chain reaction. CONCLUSION A number of CNA regions were found to be associated with the survival of SCC patients, and we were able to construct a model to estimate prognosis on the basis of these regions. Assessment of these CNAs could potentially assist in clinical decision-making regarding adjuvant therapy after surgery.
Collapse
Affiliation(s)
- Yan Cao
- Department of Pathology, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Yu Liu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Xin Yang
- Department of Pathology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China; Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| | - XiangYang Liu
- Department of Thoracic Surgical Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Naijun Han
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Dongmei Lin
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, P.R. China.
| |
Collapse
|