1
|
Herling TW, Invernizzi G, Ausserwöger H, Bjelke JR, Egebjerg T, Lund S, Lorenzen N, Knowles TPJ. Nonspecificity fingerprints for clinical-stage antibodies in solution. Proc Natl Acad Sci U S A 2023; 120:e2306700120. [PMID: 38109540 PMCID: PMC10756282 DOI: 10.1073/pnas.2306700120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
Monoclonal antibodies (mAbs) have successfully been developed for the treatment of a wide range of diseases. The clinical success of mAbs does not solely rely on optimal potency and safety but also require good biophysical properties to ensure a high developability potential. In particular, nonspecific interactions are a key developability parameter to monitor during discovery and development. Despite an increased focus on the detection of nonspecific interactions, their underlying physicochemical origins remain poorly understood. Here, we employ solution-based microfluidic technologies to characterize a set of clinical-stage mAbs and their interactions with commonly used nonspecificity ligands to generate nonspecificity fingerprints, providing quantitative data on the underlying physical chemistry. Furthermore, the solution-based analysis enables us to measure binding affinities directly, and we evaluate the contribution of avidity in nonspecific binding by mAbs. We find that avidity can increase the apparent affinity by two orders of magnitude. Notably, we find that a subset of these highly developed mAbs show nonspecific electrostatic interactions, even at physiological pH and ionic strength, and that they can form microscale particles with charge-complementary polymers. The group of mAb constructs flagged here for nonspecificity are among the worst performers in independent reports of surface and column-based screens. The solution measurements improve on the state-of-the-art by providing a stand-alone result for individual mAbs without the need to benchmark against cohort data. Based on our findings, we propose a quantitative solution-based nonspecificity score, which can be integrated in the development workflow for biological therapeutics and more widely in protein engineering.
Collapse
Affiliation(s)
- Therese W. Herling
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | | | - Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Jais Rose Bjelke
- Global Research Technologies, Novo Nordisk A/S, Måløv2760, Denmark
| | - Thomas Egebjerg
- Global Research Technologies, Novo Nordisk A/S, Måløv2760, Denmark
| | - Søren Lund
- Global Research Technologies, Novo Nordisk A/S, Måløv2760, Denmark
| | - Nikolai Lorenzen
- Global Research Technologies, Novo Nordisk A/S, Måløv2760, Denmark
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Department of Physics, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
2
|
Zou X, Tang XY, Qu ZY, Sun ZW, Ji CF, Li YJ, Guo SD. Targeting the PDGF/PDGFR signaling pathway for cancer therapy: A review. Int J Biol Macromol 2022; 202:539-557. [PMID: 35074329 DOI: 10.1016/j.ijbiomac.2022.01.113] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs) are expressed in a variety of tumors. Activation of the PDGF/PDGFR signaling pathway is associated with cancer proliferation, metastasis, invasion, and angiogenesis through modulating multiple downstream pathways, including phosphatidylinositol 3 kinase/protein kinase B pathway and mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Therefore, targeting PDGF/PDGFR signaling pathway has been demonstrated to be an effective strategy for cancer therapy, and accordingly, some great progress has been made in this field in the past few decades. This review will focus on the PDGF isoforms and their binding with the related PDGFRs, the PDGF/PDGFR signaling and regulation, and especially present strategies and inhibitors developed for cancer therapy, and the related clinical benefits and side effects.
Collapse
Affiliation(s)
- Xiang Zou
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China
| | - Xi-Yu Tang
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China
| | - Zhong-Yuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China.
| | - Zhi-Wei Sun
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Chen-Feng Ji
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China
| | - Yan-Jie Li
- Institute of lipid metabolism and Atherosclerosis, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Shou-Dong Guo
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China; School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; Institute of lipid metabolism and Atherosclerosis, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
3
|
Zhao C, Wang F, Huang J, Lv Y, Yin F, Liu H, Zheng Q, Li L. The impacts of race and regimens on the efficacy and safety of paclitaxel and platinum combination treatment for patients with advanced non-small cell lung cancer. Eur J Clin Pharmacol 2021; 77:685-695. [PMID: 33779768 DOI: 10.1007/s00228-021-03129-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Paclitaxel-platinum chemotherapy is the first-line treatment for advanced non-small cell lung cancer (NSCLC) patients. This study quantitatively evaluated the factors influencing the efficacy and safety of the paclitaxel-platinum regimen to provide the necessary reference for the development of clinical practice and clinical trials. METHODS A literature search was performed using public databases. The parametric survival function was used to analyze the overall survival (OS) time course of patients treated with the paclitaxel-platinum regimen. The random effects model in the single-arm meta-analysis was used to analyze the objective response rate (ORR) and the incidence of grade 3-4 adverse events (AEs) under the predefined subgroups according to race and the regimen. RESULTS A total of 31 studies consisting of 3365 participants were included in the analysis. Race was the most important determinant of efficacy and safety in the paclitaxel-platinum regimen, with the median survival time and ORR in East Asians and non-East Asians being 12.2 months (95% CI: 10.5-14.4 months) and 37% (95% CI: 32-41%) and 8.4 months (95% CI: 6.5-11.0 months) and 28% (95% CI: 25-32%), respectively. The incidence of grade 3-4 AEs such as leukopenia and neutropenia was about three times higher in East Asians compared to non-East Asians. CONCLUSIONS The efficacy and safety of the paclitaxel-platinum regimen can vary between East Asian and non-East Asian populations and between different treatment schedules. The results of this study can provide a reliable and precise external control for the future evaluation of new treatment options for advanced NSCLC.
Collapse
Affiliation(s)
- Chenyang Zhao
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengli Wang
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jihan Huang
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinghua Lv
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Yin
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxia Liu
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingshan Zheng
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Lujin Li
- Center for Drug Clinical Evaluation, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Ancel J, Dewolf M, Deslée G, Nawrocky-Raby B, Dalstein V, Gilles C, Polette M. Clinical Impact of the Epithelial-Mesenchymal Transition in Lung Cancer as a Biomarker Assisting in Therapeutic Decisions. Cells Tissues Organs 2020; 211:91-109. [PMID: 32750701 DOI: 10.1159/000510103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/11/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most common solid cancers and represents the leading cause of cancer death worldwide. Over the last decade, research on the epithelial-mesenchymal transition (EMT) in lung cancer has gained increasing attention. Here, we review clinical and histological features of non-small-cell lung cancer associated with EMT. We then aimed to establish potential clinical implications of EMT in current therapeutic options, including surgery, radiation, targeted therapy against oncogenic drivers, and immunotherapy.
Collapse
Affiliation(s)
- Julien Ancel
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Maxime Dewolf
- Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Gaëtan Deslée
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Service de Pneumologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Béatrice Nawrocky-Raby
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France
| | - Véronique Dalstein
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| | - Christine Gilles
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium,
| | - Myriam Polette
- Inserm, Université de Reims Champagne Ardenne, P3Cell UMR-S1250, SFR CAP-SANTE, Reims, France.,Laboratoire de Pathologie, Hôpital Maison Blanche, CHU de Reims, Reims, France
| |
Collapse
|