1
|
Huang M, Zou Y, Wang W, Li Q, Tian R. The role of baseline 18F-FDG PET/CT for survival prognosis in NSCLC patients undergoing immunotherapy: a systematic review and meta-analysis. Ther Adv Med Oncol 2024; 16:17588359241293364. [PMID: 39502406 PMCID: PMC11536524 DOI: 10.1177/17588359241293364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background The value of pretreatment baseline 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET)/computed tomography (CT) as a prognostic factor for survival of patients with non-small-cell lung cancer (NSCLC) receiving immunotherapy remained uncertain. Objectives To investigate the prognostic ability of baseline 18F-FDG PET/CT in patients with NSCLC receiving immunotherapy. Design A systematic review and meta-analysis. Data sources and methods We searched the PubMed, EMBASE, and Cochrane Central Register of Controlled Trials databases until May 7, 2024, and extracted data related to patient characteristics, semiquantitative parameters of 18F-FDG PET/CT, and survival. We pooled hazard ratios (HRs) to evaluate the prognostic value of the maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) for overall survival (OS) and progression-free survival (PFS). Results A total of 22 studies (1363 patients, average age range 30-88 years) were included. Baseline 18F-FDG PET/CT-derived MTV was significantly associated with both OS (HR: 1.124, 95% confidence interval (CI) 1.058-1.195, I 2 = 81.70%) and PFS (HR: 1.069, 95% CI: 1.016-1.124, I 2 = 71.80%). Other baseline 18F-FDG PET/CT-derived parameters, including SUVmax (OS: HR: 0.930, 95% CI: 0.718-1.230; PFS: HR: 0.979, 95% CI: 0.759-1.262), SUVmean (OS: HR: 0.801, 95% CI: 0.549-1.170; PFS: HR: 0.688, 95% CI: 0.464-1.020), and TLG (OS: HR: 0.999, 95% CI: 0.980-1.018; PFS: HR: 0.995, 95% CI: 0.980-1.010), were not associated with survival. Sensitivity analyses by removing one study at a time did not significantly alter the association between MTV and PFS or between MTV and OS. There was no evidence of publication bias. Conclusion Pretreatment baseline 18F-FDG PET/CT-derived MTV might be a prognostic biomarker in NSCLC patients receiving immunotherapy. Further studies are needed to support routine use.
Collapse
Affiliation(s)
- Mingxing Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuheng Zou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Weichen Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianrui Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan 610041, China
- National Medical Products Administration Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Chinese Evidence-Based Medicine Center, Cochrane China Center and MAGIC China Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Kudura K, Ritz N, Templeton AJ, Kutzker T, Foerster R, Antwi K, Kreissl MC, Hoffmann MHK. Predictive Value of Total Metabolic Tumor Burden Prior to Treatment in NSCLC Patients Treated with Immune Checkpoint Inhibition. J Clin Med 2023; 12:jcm12113725. [PMID: 37297920 DOI: 10.3390/jcm12113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVES We aimed to assess the predictive value of the total metabolic tumor burden prior to treatment in patients with advanced non-small-cell lung cancer (NSCLC) receiving immune checkpoint inhibitors (ICIs). METHODS Pre-treatment 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (PET/CT) scans performed in two consecutive years for staging in adult patients with confirmed NSCLC were considered. Volume, maximum/mean standardized uptake value (SUVmax/SUVmean), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were assessed per delineated malignant lesion (including primary tumor, regional lymph nodes and distant metastases) in addition to the morphology of the primary tumor and clinical data. Total metabolic tumor burden was captured by totalMTV and totalTLG. Overall survival (OS), progression-free survival (PFS) and clinical benefit (CB) were used as endpoints for response to treatment. RESULTS A total of 125 NSCLC patients were included. Osseous metastases were the most frequent distant metastases (n = 17), followed by thoracal distant metastases (pulmonal = 14 and pleural = 13). Total metabolic tumor burden prior to treatment was significantly higher in patients treated with ICIs (mean totalMTV ± standard deviation (SD) 72.2 ± 78.7; mean totalTLG ± SD 462.2 ± 538.9) compared to those without ICI treatment (mean totalMTV ± SD 58.1 ± 233.8; mean totalTLG ± SD 290.0 ± 784.2). Among the patients who received ICIs, a solid morphology of the primary tumor on imaging prior to treatment was the strongest outcome predictor for OS (Hazard ratio HR 28.04, p < 0.01), PFS (HR 30.89, p < 0.01) and CB (parameter estimation PE 3.46, p < 0.01), followed by the metabolic features of the primary tumor. Interestingly, total metabolic tumor burden prior to immunotherapy showed a negligible impact on OS (p = 0.04) and PFS (p = 0.01) after treatment given the hazard ratios of 1.00, but also on CB (p = 0.01) given the PE < 0.01. Overall, biomarkers on pre-treatment PET/CT scans showed greater predictive power in patients receiving ICIs, compared to patients without ICI treatment. CONCLUSIONS Morphological and metabolic properties of the primary tumors prior to treatment in advanced NSCLC patients treated with ICI showed great outcome prediction performances, as opposed to the pre-treatment total metabolic tumor burdens, captured by totalMTV and totalTLG, both with negligible impact on OS, PFS and CB. However, the outcome prediction performance of the total metabolic tumor burden might be influenced by the value itself (e.g., poorer prediction performance at very high or very low values of total metabolic tumor burden). Further studies including subgroup analysis with regards to different values of total metabolic tumor burden and their respective outcome prediction performances might be needed.
Collapse
Affiliation(s)
- Ken Kudura
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
- Department of Radiology, Sankt Clara Hospital, 4058 Basel, Switzerland
- Sankt Clara Research, 4002 Basel, Switzerland
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Nando Ritz
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Arnoud J Templeton
- Sankt Clara Research, 4002 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4001 Basel, Switzerland
| | - Tim Kutzker
- Faculty of Applied Statistics, Humboldt University, 10117 Berlin, Germany
| | - Robert Foerster
- Department of Radiooncology, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland
| | - Kwadwo Antwi
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
- Department of Radiology, Sankt Clara Hospital, 4058 Basel, Switzerland
| | - Michael C Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Martin H K Hoffmann
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
- Department of Radiology, Sankt Clara Hospital, 4058 Basel, Switzerland
| |
Collapse
|
3
|
Kudura K, Ritz N, Kutzker T, Hoffmann MHK, Templeton AJ, Foerster R, Kreissl MC, Antwi K. Predictive Value of Baseline FDG-PET/CT for the Durable Response to Immune Checkpoint Inhibition in NSCLC Patients Using the Morphological and Metabolic Features of Primary Tumors. Cancers (Basel) 2022; 14:6095. [PMID: 36551581 PMCID: PMC9776660 DOI: 10.3390/cancers14246095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives: We aimed to investigate the predictive value of baseline 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (FDG-PET/CT) for durable responses to immune checkpoint inhibitors (ICIs) by linking the morphological and metabolic features of primary tumors (PTs) in nonsmall cell lung cancer (NSCLC) patients. Methods: For the purpose of this single-center study, the imaging data of the patients with a first diagnosis of NSCLC and an available baseline FDG-PET/CT between 2020 and 2021 were retrospectively assessed. The baseline characteristics were collected based on clinical reports and interdisciplinary tumor board documentation. The metabolic (such as standardized uptake value SUV maximum and mean (SUVmax, SUV mean), metabolic tumor volume (MTV), total lesion glycolysis (TLG)) and morphological (such as volume, morphology, margin, and presence of lymphangiosis through imaging) features of all the PTs were retrospectively assessed using FDG-PET/CT. Overall survival (OS), progression-free survival (PFS), clinical benefit (CB) and mortality rate were used as endpoints to define the long-term response to therapy. A backward, stepwise logistic regression analysis was performed in order to define the best model for predicting lasting responses to treatment. Statistical significance was assumed at p < 0.05. Results: A total of 125 patients (median age ± standard deviation (SD) 72.0 ± 9.5 years) were enrolled: 64 men (51.2%) and 61 women (48.8%). Adenocarcinoma was by far the most common histological subtype of NSCLC (47.2%). At the initial diagnosis, the vast majority of all the included patients showed either locally advanced disease (34.4%) or metastatic disease (36.8%). Fifty patients were treated with ICIs either as a first-line (20%) or second-line (20%) therapy, while 75 patients did not receive ICIs. The median values ± SD of PT SUVmax, mean, MTV, and TLG were respectively 10.1 ± 6.0, 6.1 ± 3.5, 13.5 ± 30.7, and 71.4 ± 247.7. The median volume of PT ± SD was 13.7 ± 30.7 cm3. The PTs were most frequently solid (86.4%) with irregular margins (76.8%). Furthermore, in one out of five cases, the morphological evidence of lymphangiosis was seen through imaging (n = 25). The median follow-up ± SD was 18.93 ± 6.98 months. The median values ± SD of OS and PFS were, respectively, 14.80 ± 8.68 months and 14.03 ± 9.02 months. Age, PT volume, SUVmax, TLG, the presence of lymphangiosis features through imaging, and clinical stage IV were very strong long-term outcome predictors of patients treated with ICIs, while no significant outcome predictors could be found for the cohort with no ICI treatment. The optimal cut-off values were determined for PT volume (26.94 cm3) and SUVmax (15.05). Finally, 58% of NSCLC patients treated with ICIs had a CB vs. 78.7% of patients in the cohort with no ICI treatment. However, almost all patients treated with ICIs and with disease progression over time died (mortality in the case of disease progression 95% vs. 62.5% in the cohort without ICIs). Conclusion: Baseline FDG-PET/CT could be used to predict a durable response to ICIs in NSCLC patients. Age, clinical stage IV, lymphangiosis features through imaging, PT volume (thus PT MTV due to a previously demonstrated linear correlation), PT SUVmax, and TLG were very strong long-term outcome predictors. Our results highlight the importance of linking clinical data, as much as morphological features, to the metabolic parameters of primary tumors in a multivariate outcome-predicting model using baseline FDG-PET/CT.
Collapse
Affiliation(s)
- Ken Kudura
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
| | - Nando Ritz
- Faculty of Medicine, University of Basel, 4058 Basel, Switzerland
| | - Tim Kutzker
- Faculty of Applied Statistics, Humboldt University, 10 117 Berlin, Germany
| | | | - Arnoud J. Templeton
- Faculty of Medicine, University of Basel, 4058 Basel, Switzerland
- Sankt Clara Research, 4002 Basel, Switzerland
| | - Robert Foerster
- Department of Radiooncology, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland
| | - Michael C. Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Kwadwo Antwi
- Department of Nuclear Medicine, Sankt Clara Hospital, 4058 Basel, Switzerland
| |
Collapse
|
4
|
Zhu K, Su D, Wang J, Cheng Z, Chin Y, Chen L, Chan C, Zhang R, Gao T, Ben X, Jing C. Predictive value of baseline metabolic tumor volume for non-small-cell lung cancer patients treated with immune checkpoint inhibitors: A meta-analysis. Front Oncol 2022; 12:951557. [PMID: 36147904 PMCID: PMC9487526 DOI: 10.3389/fonc.2022.951557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have emerged as a promising treatment option for advanced non-small-cell lung cancer (NSCLC) patients, highlighting the need for biomarkers to identify responders and predict the outcome of ICIs. The purpose of this study was to evaluate the predictive value of baseline standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) derived from 18F-FDG-PET/CT in advanced NSCLC patients receiving ICIs. Methods PubMed and Web of Science databases were searched from January 1st, 2011 to July 18th, 2022, utilizing the search terms “non-small-cell lung cancer”, “PET/CT”, “standardized uptake value”, “metabolic tumor volume”, “ total lesion glycolysis”, and “immune checkpoint inhibitors”. Studies that analyzed the association between PET/CT parameters and objective response, immune-related adverse events (irAEs) and prognosis of NSCLC patients treated with ICIs were included. We extracted the hazard ratio (HR) with a 95% confidence interval (CI) for progression-free survival (PFS) and overall survival (OS). We performed a meta-analysis of HR using Review Manager v.5.4.1. Results Sixteen studies were included for review and thirteen for meta-analysis covering 770 patients. As for objective response and irAEs after ICIs, more studies with consistent assessment methods are needed to determine their relationship with MTV. In the meta-analysis, low SUVmax corresponded to poor PFS with a pooled HR of 0.74 (95% CI, 0.57-0.96, P=0.02). And a high level of baseline MTV level was related to shorter PFS (HR=1.45, 95% CI, 1.11-1.89, P<0.01) and OS (HR, 2.72; 95% CI, 1.97-3.73, P<0.01) especially when the cut-off value was set between 50-100 cm3. SUVmean and TLG were not associated with the prognosis of NSCLC patients receiving ICIs. Conclusions High level of baseline MTV corresponded to shorter PFS and OS, especially when the cut-off value was set between 50-100 cm3. MTV is a potential predictive value for the outcome of ICIs in NSCLC patients.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Danqian Su
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Jianing Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Zhouen Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Yiqiao Chin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Luyin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Chingtin Chan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Rongcai Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- International School, Jinan University, Guangzhou, China
| | - Tianyu Gao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaosong Ben
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Xiaosong Ben, ; Chunxia Jing,
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
- *Correspondence: Xiaosong Ben, ; Chunxia Jing,
| |
Collapse
|