1
|
Singh S, Siva BV, Ravichandiran V. Advanced Glycation End Products: key player of the pathogenesis of atherosclerosis. Glycoconj J 2022; 39:547-563. [PMID: 35579827 DOI: 10.1007/s10719-022-10063-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 01/08/2023]
Abstract
Atherosclerosis is the most common type of cardiovascular disease, and it causes intima thickening, plaque development, and ultimate blockage of the artery lumen. Advanced glycation end products (AGEs) are thought to have a role in the development and progression of atherosclerosis. there is developing an enthusiasm for AGEs as a potential remedial target. AGES mainly induce arterial damage and exacerbate the development of atherosclerotic plaques by triggering cell receptor-dependent signalling. The interplay of AGEs with RAGE, a transmembrane signalling receptor present across all cells important to atherosclerosis, changes cell activity, boosts expression of genes, and increases the outflow of inflammatory compounds, resulting in arterial wall injury and plaque formation. Here in this review, function of AGEs in the genesis, progression, and instability of atherosclerosis is discussed. In endothelial and smooth muscle cells, as well as platelets, the interaction of AGEs with their transmembrane cell receptor, RAGE, triggers intracellular signalling, resulting in endothelial damage, vascular smooth muscle cell function modification, and changed platelet activity.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, 844102, Dist:Vaishali, Hajipur, Bihar, India.
| | - Boddu Veerabadra Siva
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, 844102, Dist:Vaishali, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, 844102, Dist:Vaishali, Hajipur, Bihar, India
| |
Collapse
|
2
|
Marques P, Domingo E, Rubio A, Martinez-Hervás S, Ascaso JF, Piqueras L, Real JT, Sanz MJ. Beneficial effects of PCSK9 inhibition with alirocumab in familial hypercholesterolemia involve modulation of new immune players. Biomed Pharmacother 2021; 145:112460. [PMID: 34864314 DOI: 10.1016/j.biopha.2021.112460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
Familial hypercholesterolemia (FH) is associated with low-grade systemic inflammation, a key driver of premature atherosclerosis. We investigated the effects of inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9) function on inflammatory state, endothelial dysfunction and cardiovascular outcomes in patients with FH. Fourteen patients with FH were evaluated before and 8 weeks after administration of a PCSK9 blocking monoclonal antibody (alirocumab, 150 mg/subcutaneous/14 days). In vivo and ex vivo analysis revealed that alirocumab blunted the attachment of leukocytes to TNFα-stimulated human umbilical arterial endothelial cells (HUAEC) and suppressed the activation of platelets and most leukocyte subsets, which was accompanied by the diminished expression of CX3CR1, CXCR6 and CCR2 on several leukocyte subpopulations. By contrast, T-regulatory cell activation was enhanced by alirocumab treatment, which also elevated anti-inflammatory IL-10 plasma levels and lowered circulating pro-inflammatory cytokines. Plasma levels of IFNγ positively correlated with levels of total and LDL-cholesterol, whereas circulating IL-10 levels negatively correlated with these key lipid parameters. In vitro analysis revealed that TNFα stimulation of HUAEC increased the expression of PCSK9, whereas endothelial PCSK9 silencing reduced TNFα-induced mononuclear cell adhesion mediated by Nox5 up-regulation and p38-MAPK/NFκB activation, concomitant with reduced SREBP2 expression. PCSK9 silencing also decreased endothelial CX3CL1 and CXCL16 expression and chemokine generation. In conclusion, PCSK9 inhibition impairs systemic inflammation and endothelial dysfunction by constraining leukocyte-endothelium interactions. PCSK9 blockade may constitute a new therapeutic approach to control the inflammatory state associated with FH, preventing further cardiovascular events in this cardiometabolic disorder.
Collapse
Affiliation(s)
- Patrice Marques
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; Institute of Health Research INCLIVA, Av. Menéndez Pelayo 4, 46010 Valencia, Spain
| | - Elena Domingo
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Arantxa Rubio
- Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain
| | - Sergio Martinez-Hervás
- Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; Institute of Health Research INCLIVA, Av. Menéndez Pelayo 4, 46010 Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Juan F Ascaso
- Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; Institute of Health Research INCLIVA, Av. Menéndez Pelayo 4, 46010 Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Laura Piqueras
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; Institute of Health Research INCLIVA, Av. Menéndez Pelayo 4, 46010 Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - José T Real
- Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; Institute of Health Research INCLIVA, Av. Menéndez Pelayo 4, 46010 Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Av. Blasco Ibañez 17, 46010 Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Maria-Jesus Sanz
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain; Institute of Health Research INCLIVA, Av. Menéndez Pelayo 4, 46010 Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos 3-5, 28029 Madrid, Spain.
| |
Collapse
|
3
|
Bitsi S. The chemokine CXCL16 can rescue the defects in insulin signaling and sensitivity caused by palmitate in C2C12 myotubes. Cytokine 2020; 133:155154. [PMID: 32535333 DOI: 10.1016/j.cyto.2020.155154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
In obesity, macrophages infiltrate peripheral tissues and secrete pro-inflammatory cytokines that impact local insulin sensitivity. Lipopolysaccharide (LPS) and the saturated fatty acid (FA) palmitate polarise macrophages towards a pro-inflammatory phenotype in vitro and indirectly cause insulin resistance (IR) in myotubes. In contrast, unsaturated FAs confer an anti-inflammatory phenotype and counteract the actions of palmitate. To explore paracrine mechanisms of interest, J774 macrophages were exposed to palmitate ± palmitoleate or control medium and the conditioned media generated were screened using a cytokine array. Of the 62 cytokines examined, 8 were significantly differentially expressed following FA treatments. Notably, CXCL16 secretion was downregulated by palmitate. In follow-up experiments using ELISAs, this downregulation was confirmed and reversed by simultaneous addition of palmitoleate or oleate, while LPS also diminished CXCL16 secretion. To dissect potential effects of CXCL16, C2C12 myotubes were treated with palmitate to induce IR, recombinant soluble CXCL16 (sCXCL16), combined treatment, or control medium. Palmitate caused the expected reduction of insulin-stimulated Akt activation and glycogen synthesis, whereas simultaneous treatment with sCXCL16 attenuated these effects. These data indicate a putative role for CXCL16 in preservation of Akt activation and insulin signaling in the context of chronic low-grade inflammation in skeletal muscle.
Collapse
Affiliation(s)
- Stavroula Bitsi
- Comparative Biomedical Sciences Department, Royal Veterinary College, London NW1 0TU, United Kingdom.
| |
Collapse
|
4
|
Abdel-Messeih PL, Alkady MM, Nosseir NM, Tawfik MS. Inflammatory markers in end-stage renal disease patients on haemodialysis. J Med Biochem 2020; 39:481-487. [PMID: 33312065 DOI: 10.5937/jomb0-25120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
Background CXC chemokine ligand 16 (CXCL16) is an inflammatory chemokine that mediates renal infiltration of macrophages and activated T cells. Aim: To investigate serum levels of CXCL16 in patients undergoing hemodialysis and their correlation with other inflammatory markers such as C-reactive protein (CRP) and intact parathyroid hormone (iPTH). Methods The study included 40 hemodialysis patients (22 males) and 40 age and gender-matched controls (24 males). Fasting blood sugar (FBS), urea, creatinine, calcium and inorganic phosphorous were assayed in participants using routine methods, glycosylated hemoglobin (HbA1c) by quantitative chromatographic spectrophotometry, iPTH by chemiluminescent microparticle immunoassay, CRP by nephelometry and CXCL16 by ELISA technique. Results Serum CXCL16, CRP, PTH, FBS, HbA1c, phosphorus, urea, and creatinine levels were significantly higher in hemodialysis patients compared to controls (p<0.00001). No statistically significant differences were observed between patients and controls for calcium. Serum CXCL16 levels correlated positively with CRP (r=0.956, p<0.00001) and iPTH (r=-0.403, p<0.001). Hemodialysis patients (diabetics or hypertensives) had significantly higher CXCL16 levels compared to non-diabetics or non-hypertensives. Conclusions High levels of serum CXCL16, CRP and iPTH reflect the inflammatory status of hemodialysis patients and help avoid complications. Serum CXCL16 could be used as a biomarker together with CRP in these patients.
Collapse
Affiliation(s)
- Phebe Lotfy Abdel-Messeih
- Egyptian Atomic Energy Authority (EAEA), National Centers for Radiation Research and Technology (NCRRT), Health Radiation Research Department, Clinical Pathology Unit, Egypt
| | - Manal Mohamed Alkady
- Egyptian Atomic Energy Authority (EAEA), National Centers for Radiation Research and Technology (NCRRT), Health Radiation Research Department, Clinical Pathology Unit, Egypt
| | - Neveen Mostafa Nosseir
- Egyptian Atomic Energy Authority (EAEA), National Centers for Radiation Research and Technology (NCRRT), Health Radiation Research Department, Clinical Pathology Unit, Egypt
| | - Mohamed Said Tawfik
- Egyptian Atomic Energy Authority (EAEA), National Centers for Radiation Research and Technology (NCRRT), Health Radiation Research Department, Internal Medicine Unit, Cairo, Egypt
| |
Collapse
|
5
|
Collado A, Marques P, Escudero P, Rius C, Domingo E, Martinez-Hervás S, Real JT, Ascaso JF, Piqueras L, Sanz MJ. Functional role of endothelial CXCL16/CXCR6-platelet-leucocyte axis in angiotensin II-associated metabolic disorders. Cardiovasc Res 2019; 114:1764-1775. [PMID: 29800106 DOI: 10.1093/cvr/cvy135] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/18/2018] [Indexed: 12/16/2022] Open
Abstract
Aims Angiotensin-II (Ang-II) is the main effector peptide of the renin-angiotensin system (RAS) and promotes leucocyte adhesion to the stimulated endothelium. Because RAS activation and Ang-II signalling are implicated in metabolic syndrome (MS) and abdominal aortic aneurysm (AAA), we investigated the effect of Ang-II on CXCL16 arterial expression, the underlying mechanisms, and the functional role of the CXCL16/CXCR6 axis in these cardiometabolic disorders. Methods and results Results from in vitro chamber assays revealed that CXCL16 neutralization significantly inhibited mononuclear leucocyte adhesion to arterial but not to venous endothelial cells. Flow cytometry and immunofluorescence studies confirmed that Ang-II induced enhanced endothelial CXCL16 expression, which was dependent on Nox5 up-regulation and subsequent RhoA/p38-MAPK/NFκB activation. Flow cytometry analysis further showed that MS patients had higher levels of platelet activation and a higher percentage of circulating CXCR6-expressing platelets, CXCR6-expressing-platelet-bound neutrophils, monocytes, and CD8+ lymphocytes than age-matched controls, leading to enhanced CXCR6/CXCL16-dependent adhesion to the dysfunctional (Ang-II- and TNFα-stimulated) arterial endothelium. Ang-II-challenged apolipoprotein E-deficient (apoE-/-) mice had a higher incidence of AAA, macrophage, CD3+, and CXCR6+ cell infiltration and neovascularization than unchallenged animals, which was accompanied by greater CCL2, CXCL16, and VEGF mRNA expression within the lesion together with elevated levels of circulating soluble CXCL16. Significant reductions in these parameters were found in animals co-treated with the AT1 receptor antagonist losartan or in apoE-/- mice lacking functional CXCR6 receptor (CXCR6GFP/GFP). Conclusion CXCR6 expression on platelet-bound monocytes and CD8+ lymphocytes may constitute a new membrane-associated biomarker for adverse cardiovascular events. Moreover, pharmacological modulation of this axis may positively affect cardiovascular outcome in metabolic disorders linked to Ang-II.
Collapse
Affiliation(s)
- Aida Collado
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University of Valencia, Av. Menéndez Pelayo 4, Valencia, Spain
| | - Patrice Marques
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University of Valencia, Av. Menéndez Pelayo 4, Valencia, Spain
| | - Paula Escudero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University of Valencia, Av. Menéndez Pelayo 4, Valencia, Spain
| | - Cristina Rius
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University of Valencia, Av. Menéndez Pelayo 4, Valencia, Spain
| | - Elena Domingo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Martinez-Hervás
- Institute of Health Research INCLIVA, University of Valencia, Av. Menéndez Pelayo 4, Valencia, Spain.,Department of Medicine, Faculty of Medicine, Endocrinology and Nutrition Unit, University Clinic Hospital of Valencia, University of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Spain
| | - José T Real
- Institute of Health Research INCLIVA, University of Valencia, Av. Menéndez Pelayo 4, Valencia, Spain.,Department of Medicine, Faculty of Medicine, Endocrinology and Nutrition Unit, University Clinic Hospital of Valencia, University of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Spain
| | - Juan F Ascaso
- Institute of Health Research INCLIVA, University of Valencia, Av. Menéndez Pelayo 4, Valencia, Spain.,Department of Medicine, Faculty of Medicine, Endocrinology and Nutrition Unit, University Clinic Hospital of Valencia, University of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Spain
| | - Laura Piqueras
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University of Valencia, Av. Menéndez Pelayo 4, Valencia, Spain
| | - Maria-Jesus Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University of Valencia, Av. Menéndez Pelayo 4, Valencia, Spain
| |
Collapse
|
6
|
Hu ZB, Ma KL, Zhang Y, Wang GH, Liu L, Lu J, Chen PP, Lu CC, Liu BC. Inflammation-activated CXCL16 pathway contributes to tubulointerstitial injury in mouse diabetic nephropathy. Acta Pharmacol Sin 2018; 39:1022-1033. [PMID: 29620052 DOI: 10.1038/aps.2017.177] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/19/2017] [Indexed: 02/06/2023]
Abstract
Inflammation and lipid disorders play crucial roles in synergistically accelerating the progression of diabetic nephropathy (DN). In this study we investigated how inflammation and lipid disorders caused tubulointerstitial injury in DN in vivo and in vitro. Diabetic db/db mice were injected with 10% casein (0.5 mL, sc) every other day for 8 weeks to cause chronic inflammation. Compared with db/db mice, casein-injected db/db mice showed exacerbated tubulointerstitial injury, evidenced by increased secretion of extracellular matrix (ECM) and cholesterol accumulation in tubulointerstitium, which was accompanied by activation of the CXC chemokine ligand 16 (CXCL16) pathway. In the in vitro study, we treated HK-2 cells with IL-1β (5 ng/mL) and high glucose (30 mmol/L). IL-1β treatment increased cholesterol accumulation in HK-2 cells, leading to greatly increased ROS production, ECM protein expression levels, which was accompanied by the upregulated expression levels of proteins in the CXCL16 pathway. In contrast, after CXCL16 in HK-2 cells was knocked down by siRNA, the IL-1β-deteriorated changes were attenuated. In conclusion, inflammation accelerates renal tubulointerstitial lesions in mouse DN via increasing the activity of CXCL16 pathway.
Collapse
|
7
|
Marques P, Collado A, Escudero P, Rius C, González C, Servera E, Piqueras L, Sanz MJ. Cigarette Smoke Increases Endothelial CXCL16-Leukocyte CXCR6 Adhesion In Vitro and In Vivo. Potential Consequences in Chronic Obstructive Pulmonary Disease. Front Immunol 2017; 8:1766. [PMID: 29326688 PMCID: PMC5733535 DOI: 10.3389/fimmu.2017.01766] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease (CVD) is a major comorbidity in chronic obstructive pulmonary disease (COPD). Although the mechanism of its development remains largely unknown, it appears to be associated with cigarette consumption and reduced lung function. Therefore, the aim of this study was to investigate the potential link between water-soluble cigarette smoke extract (CSE)-induced endothelial dysfunction and the function of CXCL16/CXCR6 axis on the initial attachment of leukocytes, in addition to its possible impact on COPD-associated systemic inflammation. To do this, we employed several experimental approaches, including RNA silencing and flow cytometry analysis, the dynamic flow chamber technique, and intravital microscopy in the cremasteric arterioles of animals exposed to cigarette smoke (CS). CSE-induced arterial CXCL16 expression, leading to increased platelet–leukocyte and mononuclear cell adhesiveness. CSE-induced CXCL16 expression was dependent on Nox5 expression and subsequent RhoA/p38 MAPK/NF-κB activation. Flow cytometry analysis revealed that COPD patients (n = 35) presented greater numbers of activated circulating platelets (PAC-1+ and P-selectin+) expressing CXCL16 and CXCR6 as compared with age-matched controls (n = 17), with a higher number of CXCR6+-platelets in the smoking COPD group than in ex-smokers. This correlated with enhanced circulating CXCR6+-platelet–leukocyte aggregates in COPD patients. The increase in circulating numbers of CXCR6-expressing platelets and mononuclear cells resulted in enhanced platelet–leukocyte and leukocyte adhesiveness to CSE-stimulated arterial endothelium, which was greater than that found in age-matched controls and was partly dependent on endothelial CXCL16 upregulation. Furthermore, CS exposure provoked CXCL16-dependent leukocyte–arteriolar adhesion in cremasteric arterioles, which was significantly reduced in animals with a nonfunctional CXCR6 receptor. In conclusion, we provide the first evidence that increased numbers of CXCR6-expressing circulating platelets and mononuclear leukocytes from patients with COPD might be a marker of systemic inflammation with potential consequences in CVD development. Accordingly, CXCL16/CXCR6 axis blockade might constitute a new therapeutic approach for decreasing the risk of CVD in COPD patients.
Collapse
Affiliation(s)
- Patrice Marques
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Aida Collado
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Paula Escudero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Cristina Rius
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Cruz González
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,Neumology Unit, University Clinic Hospital of Valencia, Valencia, Spain
| | - Emilio Servera
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,Neumology Unit, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Maria-Jesus Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Santos SMD, Blankenbach K, Scholich K, Dörr A, Monsefi N, Keese M, Linke B, Deckmyn H, Nelson K, Harder S. Platelets from flowing blood attach to the inflammatory chemokine CXCL16 expressed in the endothelium of the human vessel wall. Thromb Haemost 2017; 114:297-312. [DOI: 10.1160/th14-11-0911] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/03/2015] [Indexed: 02/07/2023]
Abstract
SummaryEndothelial chemokine CXC motif ligand 16 (CXCL16) expression is associated with atherosclerosis, while platelets, particularly those attaching to atherosclerotic plaque, contribute to all stages of athero-sclerotic disease. This investigation was designed to examine the role of CXCL16 in capturing platelets from flowing blood. CXCL16 was expressed in human atherosclerotic plaques, and lesion severity in human carotid endarterectomy specimens was positively correlated with CXCL16 levels. CXCL16 expression in plaques was co-localised with platelets deposited to the endothelium. Immobilised CXCL16 promoted CXCR6-dependent platelet adhesion to the human vessel wall, endothelial cells and von Willebrand factor during physiologic flow. At low shear, immobilised CXCL16 captured platelets from flowing blood. It also induced irreversible platelet aggregation and a rise in intra-platelet calcium levels. These results demonstrate that endothelial CXCL16’s action on platelets is not only limited to platelet activation, but that immobilised CXCL16 also acts as a potent novel platelet adhesion ligand, inducing platelet adhesion to the human vessel wall.
Collapse
|
9
|
Dreymueller D, Goetzenich A, Emontzpohl C, Soppert J, Ludwig A, Stoppe C. The perioperative time course and clinical significance of the chemokine CXCL16 in patients undergoing cardiac surgery. J Cell Mol Med 2015; 20:104-15. [PMID: 26499307 PMCID: PMC4717864 DOI: 10.1111/jcmm.12708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/01/2015] [Indexed: 02/03/2023] Open
Abstract
The chemokine CXCL16 and its receptor CXCR6 have been linked to the pathogenesis of acute and chronic cardiovascular disease. However, data on the clinical significance of CXCL16 in patients undergoing cardiac surgery with acute myocardial ischemia/reperfusion (I/R) are still lacking. Therefore, we determined CXCL16 in the serum of cardiac surgery patients and investigated its kinetics and association with the extent of organ dysfunction. 48 patients underwent conventional cardiac surgery with myocardial I/R and the use of cardiopulmonary bypass (CPB) were consecutively enrolled in the present study. We investigated the peri‐ and post‐operative profile of CXCL16. Clinical relevant data were assessed and documented throughout the entire observation period. To identify the influence of myocardial I/R and CPB on CXCL16 release data were compared to those received from patients that underwent off‐pump procedure. Pre‐operative serum CXCL16 levels were comparable to those obtained from healthy volunteers (1174 ± 55.64 pg/ml versus 1225 ± 70.94). However, CXCL16 levels significantly increased during surgery (1174 ± 55.64 versus 1442 ± 75.42 pg/ml; P = 0.0057) and reached maximum levels 6 hrs after termination of surgery (1174 ± 55.64 versus 1648 ± 74.71 pg/ml; P < 0.001). We revealed a positive correlation between the intraoperative serum levels of CXCL16 and the extent of organ dysfunction (r2 = 0.356; P = 0.031). Patients with high CXCL16 release showed an increased extent of organ dysfunction compared to patients with low CXCL16 release. Our study shows that CXCL16 is released into the circulation as a result of cardiac surgery and that high post‐operative CXCL16 levels are associated with an increased severity of post‐operative organ dysfunctions.
Collapse
Affiliation(s)
- Daniela Dreymueller
- Institute of Pharmacology and Toxicology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Andreas Goetzenich
- Department for Thoracic and Cardiovascular Surgery, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Christoph Emontzpohl
- Institute of Biochemistry and Molecular Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Josefin Soppert
- Department for Thoracic and Cardiovascular Surgery, University Hospital, RWTH Aachen University, Aachen, Germany.,Institute of Biochemistry and Molecular Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Christian Stoppe
- Institute of Biochemistry and Molecular Cell Biology, University Hospital, RWTH Aachen University, Aachen, Germany.,Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Vergori L, Lauret E, Gaceb A, Beauvillain C, Andriantsitohaina R, Martinez MC. PPARα Regulates Endothelial Progenitor Cell Maturation and Myeloid Lineage Differentiation Through a NADPH Oxidase-Dependent Mechanism in Mice. Stem Cells 2015; 33:1292-303. [DOI: 10.1002/stem.1924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/31/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Luisa Vergori
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques; Institut de Biologie en Santé Université d'Angers; Angers France
- Department of Biosciences, Biotechnologies and Biofarmaceutic; University of Bari; Bari Italy
- Centre Hospitalo-Universitaire d'Angers; Angers France
| | - Emilie Lauret
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques; Institut de Biologie en Santé Université d'Angers; Angers France
| | - Abderahim Gaceb
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques; Institut de Biologie en Santé Université d'Angers; Angers France
| | - Céline Beauvillain
- Centre Hospitalo-Universitaire d'Angers; Angers France
- INSERM U892, CNRS UMR6299; Université d'Angers; Angers France
| | - Ramaroson Andriantsitohaina
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques; Institut de Biologie en Santé Université d'Angers; Angers France
- Centre Hospitalo-Universitaire d'Angers; Angers France
| | - M. Carmen Martinez
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques; Institut de Biologie en Santé Université d'Angers; Angers France
- Centre Hospitalo-Universitaire d'Angers; Angers France
| |
Collapse
|
11
|
Izquierdo MC, Martin-Cleary C, Fernandez-Fernandez B, Elewa U, Sanchez-Niño MD, Carrero JJ, Ortiz A. CXCL16 in kidney and cardiovascular injury. Cytokine Growth Factor Rev 2014; 25:317-25. [PMID: 24861945 DOI: 10.1016/j.cytogfr.2014.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Abstract
CXC chemokine ligand 16 (CXCL16) is a CXC soluble chemokine, an adhesion molecule and a cell surface scavenger receptor. CXCL16 regulates inflammation, tissue injury and fibrosis. Parenchymal renal cells, vascular wall cells, leukocytes and platelets express and/or release CXCL16 under the regulation of inflammatory mediators. CXCL16 expression is increased in experimental and human nephropathies. Targeting CXCL16 protected from experimental glomerular injury or interstitial fibrosis. Conflicting results were reported for experimental cardiovascular injury. High circulating CXCL16 levels are associated to human kidney and cardiovascular disease and urinary CXCL16 may increase in kidney injury. In conclusion, mounting evidence suggests a role of CXCL16 in kidney and cardiovascular disease. However, a better understanding is still required before exploring CXCL16 targeting in the clinic.
Collapse
Affiliation(s)
| | | | | | - Usama Elewa
- IIS-Fundacion Jimenez Diaz, Madrid, Spain; REDINREN, Madrid, Spain.
| | | | | | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, Madrid, Spain; REDINREN, Madrid, Spain; Universidad Autonoma de Madrid and FRIAT/IRSIN, Madrid, Spain.
| |
Collapse
|