1
|
Qu JH, Tarasov KV, Chakir K, Tarasova YS, Riordon DR, Lakatta EG. Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome. Cells 2022; 11:cells11213496. [PMID: 36359893 PMCID: PMC9654263 DOI: 10.3390/cells11213496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Rationale: The 14-3-3 protein family is known to interact with many proteins in non-cardiac cell types to regulate multiple signaling pathways, particularly those relating to energy and protein homeostasis; and the 14-3-3 network is a therapeutic target of critical metabolic and proteostatic signaling in cancer and neurological diseases. Although the heart is critically sensitive to nutrient and energy alterations, and multiple signaling pathways coordinate to maintain the cardiac cell homeostasis, neither the structure of cardiac 14-3-3 protein interactome, nor potential functional roles of 14-3-3 protein–protein interactions (PPIs) in heart has been explored. Objective: To establish the comprehensive landscape and characterize the functional role of cardiac 14-3-3 PPIs. Methods and Results: We evaluated both RNA expression and protein abundance of 14-3-3 isoforms in mouse heart, followed by co-immunoprecipitation of 14-3-3 proteins and mass spectrometry in left ventricle. We identified 52 proteins comprising the cardiac 14-3-3 interactome. Multiple bioinformatic analyses indicated that more than half of the proteins bound to 14-3-3 are related to mitochondria; and the deduced functions of the mitochondrial 14-3-3 network are to regulate cardiac ATP production via interactions with mitochondrial inner membrane proteins, especially those in mitochondrial complex I. Binding to ribosomal proteins, 14-3-3 proteins likely coordinate protein synthesis and protein quality control. Localizations of 14-3-3 proteins to mitochondria and ribosome were validated via immunofluorescence assays. The deduced function of cardiac 14-3-3 PPIs is to regulate cardiac metabolic homeostasis and proteostasis. Conclusions: Thus, the cardiac 14-3-3 interactome may be a potential therapeutic target in cardiovascular metabolic and proteostatic disease states, as it already is in cancer therapy.
Collapse
|
2
|
Weng L, Chen TH, Zheng Q, Weng WH, Huang L, Lai D, Fu YS, Weng CF. Syringaldehyde promoting intestinal motility with suppressing α-amylase hinders starch digestion in diabetic mice. Biomed Pharmacother 2021; 141:111865. [PMID: 34246193 DOI: 10.1016/j.biopha.2021.111865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
The antihyperglycemic potential of syringaldehyde has been previously investigated; however, the underlying mechanism remains unclear. In this study, we performed a postprandial glucose test (in vivo) including oral glucose tolerance test (OGTT) and oral starch tolerance test (OSTT) in fructose-induced diabetic mice on a high-fat diet for mimicking type 2 diabetes to explore the hypoglycemic efficacy of syringaldehyde and the underlined molecular involvement of syringaldehyde in a glucose-lowering effect. The results revealed that syringaldehyde dose-dependently suppressed blood glucose in both the OSTT and OGTT when referenced to acarbose and metformin, respectively. Surprisingly, syringaldehyde triggered jejunum motility (ex vivo) via activation of the muscarinic-type acetylcholine receptor. By performing virtual screening with molecular docking, the data showed that syringaldehyde nicely interacted with glucagon-like peptide 1 receptor (GLP-1R), peroxisome proliferator-activated receptor (PPAR), dipeptidyl peptidase-IV (DPP-4), acetylcholine M2 receptor, and acetylcholinesterase. These results showed that syringaldehyde can potentiate intestinal contractility to abolish the α-amylase reaction when concurrently reducing retention time and glucose absorption to achieve a glucose-lowering effect in diabetic mice, suggesting its potential therapeutic benefits with improvement for use as a prophylactic and treatment.
Collapse
Affiliation(s)
- Lebin Weng
- Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ting-Hsu Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Qingyan Zheng
- Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Wei-Hao Weng
- Department of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Liyue Huang
- Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Dong Lai
- Medical Research Center, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Yaw-Syan Fu
- Medical Research Center, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China; Department of Anatomy, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ching-Feng Weng
- Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Medical Research Center, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| |
Collapse
|
3
|
Giacoman-Martínez A, Alarcón-Aguilar FJ, Zamilpa A, Huang F, Romero-Nava R, Román-Ramos R, Almanza-Pérez JC. α-Amyrin induces GLUT4 translocation mediated by AMPK and PPARδ/γ in C2C12 myoblasts. Can J Physiol Pharmacol 2021; 99:935-942. [PMID: 33596122 DOI: 10.1139/cjpp-2021-0027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
α-Amyrin, a natural pentacyclic triterpene, has an antihyperglycemic effect in mice and dual PPARδ/γ action in 3T3-L1 adipocytes, and potential in the control of type 2 diabetes (T2D). About 80% of glucose uptake occurs in skeletal muscle cells, playing a significant role in insulin resistance (IR) and T2D. Peroxisome-proliferator activated receptors (PPARs), in particular PPARδ and PPARγ, are involved in the regulation of lipids and carbohydrates and, along with adenosine-monophosphate (AMP) - activated protein kinase (AMPK) and protein kinase B (Akt), are implicated in translocation of glucose transporter 4 (GLUT4); however, it is still unknown whether α-amyrin can affect these pathways in skeletal muscle cells. Our objective was to determine the action of α-amyrin in PPARδ, PPARγ, AMPK, and Akt in C2C12 myoblasts. The expression of PPARδ, PPARγ, fatty acid transporter protein (FATP), and GLUT4 was quantified using reverse transcription quantitative PCR and Western blot. α-Amyrin increased these markers along with phospho-AMPK (p-AMPK) but not p-Akt. Molecular docking showed that α-amyrin acts as an AMPK-allosteric activator, and may be related to GLUT4 translocation, as evidenced by confocal microscopy. These data support that α-amyrin could have an insulin-mimetic action in C2C12 myoblasts and should be considered as a bioactive molecule for new multitarget drugs with utility in T2D and other metabolic diseases.
Collapse
Affiliation(s)
- Abraham Giacoman-Martínez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México.,Departamento de Farmacología y Toxicología, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Francisco Javier Alarcón-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Alejandro Zamilpa
- Departamento de Fitoquímica Farmacológica, Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, México
| | - Fengyang Huang
- Departamento de Farmacología y Toxicología, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Rodrigo Romero-Nava
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México.,Escuela Superior de Medicina del Instituto Politécnico Nacional, Laboratorio de Señalización Intracelular, Sección de Posgrado, Ciudad de México, México
| | - Rubén Román-Ramos
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Julio César Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| |
Collapse
|
4
|
Pennington KL, Chan TY, Torres MP, Andersen JL. The dynamic and stress-adaptive signaling hub of 14-3-3: emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 2018; 37:5587-5604. [PMID: 29915393 PMCID: PMC6193947 DOI: 10.1038/s41388-018-0348-3] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
14-3-3 proteins are a family of structurally similar phospho-binding proteins that regulate essentially every major cellular function. Decades of research on 14-3-3s have revealed a remarkable network of interacting proteins that demonstrate how 14-3-3s integrate and control multiple signaling pathways. In particular, these interactions place 14-3-3 at the center of the signaling hub that governs critical processes in cancer, including apoptosis, cell cycle progression, autophagy, glucose metabolism, and cell motility. Historically, the majority of 14-3-3 interactions have been identified and studied under nutrient-replete cell culture conditions, which has revealed important nutrient driven interactions. However, this underestimates the reach of 14-3-3s. Indeed, the loss of nutrients, growth factors, or changes in other environmental conditions (e.g., genotoxic stress) will not only lead to the loss of homeostatic 14-3-3 interactions, but also trigger new interactions, many of which are likely stress adaptive. This dynamic nature of the 14-3-3 interactome is beginning to come into focus as advancements in mass spectrometry are helping to probe deeper and identify context-dependent 14-3-3 interactions-providing a window into adaptive phosphorylation-driven cellular mechanisms that orchestrate the tumor cell's response to a variety of environmental conditions including hypoxia and chemotherapy. In this review, we discuss emerging 14-3-3 regulatory mechanisms with a focus on post-translational regulation of 14-3-3 and dynamic protein-protein interactions that illustrate 14-3-3's role as a stress-adaptive signaling hub in cancer.
Collapse
Affiliation(s)
- K L Pennington
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - T Y Chan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - M P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
5
|
Visuttijai K, Pettersson J, Mehrbani Azar Y, van den Bout I, Örndal C, Marcickiewicz J, Nilsson S, Hörnquist M, Olsson B, Ejeskär K, Behboudi A. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT. PLoS One 2016; 11:e0164063. [PMID: 27716847 PMCID: PMC5055341 DOI: 10.1371/journal.pone.0164063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/18/2016] [Indexed: 12/12/2022] Open
Abstract
Myosin-1C (MYO1C) is a tumor suppressor candidate located in a region of recurrent losses distal to TP53. Myo1c can tightly and specifically bind to PIP2, the substrate of Phosphoinositide 3-kinase (PI3K), and to Rictor, suggesting a role for MYO1C in the PI3K pathway. This study was designed to examine MYO1C expression status in a panel of well-stratified endometrial carcinomas as well as to assess the biological significance of MYO1C as a tumor suppressor in vitro. We found a significant correlation between the tumor stage and lowered expression of MYO1C in endometrial carcinoma samples. In cell transfection experiments, we found a negative correlation between MYO1C expression and cell proliferation, and MYO1C silencing resulted in diminished cell migration and adhesion. Cells expressing excess of MYO1C had low basal level of phosphorylated protein kinase B (PKB, a.k.a. AKT) and cells with knocked down MYO1C expression showed a quicker phosphorylated AKT (pAKT) response in reaction to serum stimulation. Taken together the present study gives further evidence for tumor suppressor activity of MYO1C and suggests MYO1C mediates its tumor suppressor function through inhibition of PI3K pathway and its involvement in loss of contact inhibition.
Collapse
Affiliation(s)
- Kittichate Visuttijai
- School of Bioscience, Tumor Biology research group, University of Skövde, SE-541 28, Skövde, Sweden
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Jennifer Pettersson
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Yashar Mehrbani Azar
- School of Bioscience, Tumor Biology research group, University of Skövde, SE-541 28, Skövde, Sweden
| | - Iman van den Bout
- Department of physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0007, South Africa
| | - Charlotte Örndal
- Department of Pathology, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Janusz Marcickiewicz
- Department of Obstetrics and Gynecology, Halland Hospital Varberg, SE- 432 37, Varberg, Sweden
| | - Staffan Nilsson
- Institute of Mathematical Statistics, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Michael Hörnquist
- Department of Science and Technology, University of Linköping, ITN, SE-601 74, Norrköping, Sweden
| | - Björn Olsson
- School of Bioscience, Tumor Biology research group, University of Skövde, SE-541 28, Skövde, Sweden
| | - Katarina Ejeskär
- School of Bioscience, Tumor Biology research group, University of Skövde, SE-541 28, Skövde, Sweden
| | - Afrouz Behboudi
- School of Bioscience, Tumor Biology research group, University of Skövde, SE-541 28, Skövde, Sweden
- * E-mail:
| |
Collapse
|
6
|
Hedberg Oldfors C, Dios DG, Linder A, Visuttijai K, Samuelson E, Karlsson S, Nilsson S, Behboudi A. Analysis of an independent tumor suppressor locus telomeric to Tp53 suggested Inpp5k and Myo1c as novel tumor suppressor gene candidates in this region. BMC Genet 2015; 16:80. [PMID: 26170120 PMCID: PMC4501283 DOI: 10.1186/s12863-015-0238-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/23/2015] [Indexed: 01/26/2023] Open
Abstract
Background Several reports indicate a commonly deleted chromosomal region independent from, and distal to the TP53 locus in a variety of human tumors. In a previous study, we reported a similar finding in a rat tumor model for endometrial carcinoma (EC) and through developing a deletion map, narrowed the candidate region to 700 kb, harboring 19 genes. In the present work real-time qPCR analysis, Western blot, semi-quantitative qPCR, sequencing, promoter methylation analysis, and epigenetic gene expression restoration analyses (5-aza-2´-deoxycytidine and/or trichostatin A treatments) were used to analyze the 19 genes located within the candidate region in a panel of experimental tumors compared to control samples. Results Real-time qPCR analysis suggested Hic1 (hypermethylated in cancer 1), Inpp5k (inositol polyphosphate-5-phosphatase K; a.k.a. Skip, skeletal muscle and kidney enriched inositol phosphatase) and Myo1c (myosin 1c) as the best targets for the observed deletions. No mutation in coding sequences of these genes was detected, hence the observed low expression levels suggest a haploinsufficient mode of function for these potential tumor suppressor genes. Both Inpp5k and Myo1c were down regulated at mRNA and/or protein levels, which could be rescued in gene expression restoration assays. This could not be shown for Hic1. Conclusion Innp5k and Myo1c were identified as the best targets for the deletions in the region. INPP5K and MYO1C are located adjacent to each other within the reported independent region of tumor suppressor activity located at chromosome arm 17p distal to TP53 in human tumors. There is no earlier report on the potential tumor suppressor activity of INPP5K and MYO1C, however, overlapping roles in phosphoinositide (PI) 3-kinase/Akt signaling, known to be vital for the cell growth and survival, are reported for both. Moreover, there are reports on tumor suppressor activity of other members of the gene families that INPP5K and MYO1C belong to. Functional significance of these two candidate tumor suppressor genes in cancerogenesis pathways remains to be investigated. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0238-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carola Hedberg Oldfors
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Diego Garcia Dios
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Anna Linder
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Kittichate Visuttijai
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden. .,Tumor Biology Research Group, School of Bioscience, University of Skövde, SE-54128, Skövde, Sweden.
| | - Emma Samuelson
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Sandra Karlsson
- Tumor Biology Research Group, School of Bioscience, University of Skövde, SE-54128, Skövde, Sweden.
| | - Staffan Nilsson
- Institute of Mathematical Statistics, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.
| | - Afrouz Behboudi
- Tumor Biology Research Group, School of Bioscience, University of Skövde, SE-54128, Skövde, Sweden.
| |
Collapse
|
7
|
A New Member of the TBC1D15 Family from Chiloscyllium plagiosum: Rab GTPase-Activating Protein Based on Rab7 as a Substrate. Mar Drugs 2015; 13:2955-66. [PMID: 25984991 PMCID: PMC4446614 DOI: 10.3390/md13052955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 02/07/2023] Open
Abstract
APSL (active peptide from shark liver) is a hepatic stimulator cytokine from the liver of Chiloscyllium. It can effectively protect islet cells and improve complications in mice with alloxan-induced diabetes. Here, we demonstrate that the APSL sequence is present in the N-terminus of novel TBC (Tre-2, Bub2 and Cdc16) domain family, member 15 (TBC1D15) from Chiloscylliumplagiosum. This shark TBC1D15 gene, which contains an ORF of 2088 bp, was identified from a cDNA library of regenerating shark liver. Bioinformatic analysis showed that the gene is highly homologous to TBC1D15 genes from other species. Moreover, the N-terminus of shark TBC1D15 contains a motif of unknown function (DUF3548), which encompasses the APSL fragment. Rab-GAP activity analysis showed that shark TBC1D15 is a new member of the TBC1D15 family. These results demonstrated that shark TBC1D15 possesses Rab-GAP activity using Rab7 as a substrate, which is a common property of the TBC1D15 family. The involvement of APSL at the N-terminus of TBC1D15 also demonstrates that this protein might be involved in insulin signaling and may be associated with the development of type 2 diabetes. The current findings pave the way for further functional and clinical studies of these proteins from marine sources.
Collapse
|
8
|
Liang X, Butterworth MB, Peters KW, Frizzell RA. AS160 modulates aldosterone-stimulated epithelial sodium channel forward trafficking. Mol Biol Cell 2010; 21:2024-33. [PMID: 20410134 PMCID: PMC2883946 DOI: 10.1091/mbc.e10-01-0042] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AS160 assists in defining an intracellular compartment in which ENaC accumulates under basal conditions, and this compartment is accessed by aldosterone, via SGK-mediated phosphorylation of AS160, to permit the forward trafficking of ENaC to the apical membrane. Aldosterone-induced increases in apical membrane epithelial sodium channel (ENaC) density and Na transport involve the induction of 14-3-3 protein expression and their association with Nedd4-2, a substrate of serum- and glucocorticoid-induced kinase (SGK1)-mediated phosphorylation. A search for other 14-3-3 binding proteins in aldosterone-treated cortical collecting duct (CCD) cells identified the Rab-GAP, AS160, an Akt/PKB substrate whose phosphorylation contributes to the recruitment of GLUT4 transporters to adipocyte plasma membranes in response to insulin. In CCD epithelia, aldosterone (10 nM, 24 h) increased AS160 protein expression threefold, with a time-course similar to increases in SGK1 expression. In the absence of aldosterone, AS160 overexpression increased total ENaC expression 2.5-fold but did not increase apical membrane ENaC or amiloride-sensitive Na current (Isc). In AS160 overexpressing epithelia, however, aldosterone increased apical ENaC and Isc 2.5-fold relative to aldosterone alone, thus recruiting the accumulated ENaC to the apical membrane. Conversely, AS160 knockdown increased apical membrane ENaC and Isc under basal conditions to ∼80% of aldosterone-stimulated values, attenuating further steroid effects. Aldosterone induced AS160 phosphorylation at five sites, predominantly at the SGK1 sites T568 and S751, and evoked AS160 binding to the steroid-induced 14-3-3 isoforms, β and ε. AS160 mutations at SGK1 phospho-sites blocked its selective interaction with 14-3-3β and ε and suppressed the ability of expressed AS160 to augment aldosterone action. These findings indicate that the Rab protein regulator, AS160, stabilizes ENaC in a regulated intracellular compartment under basal conditions, and that aldosterone/SGK1-dependent AS160 phosphorylation permits ENaC forward trafficking to the apical membrane to augment Na absorption.
Collapse
Affiliation(s)
- Xiubin Liang
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|