1
|
Mambrini SP, Grillo A, Colosimo S, Zarpellon F, Pozzi G, Furlan D, Amodeo G, Bertoli S. Diet and physical exercise as key players to tackle MASLD through improvement of insulin resistance and metabolic flexibility. Front Nutr 2024; 11:1426551. [PMID: 39229589 PMCID: PMC11370663 DOI: 10.3389/fnut.2024.1426551] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) has emerged as a prevalent health concern, encompassing a wide spectrum of liver-related disorders. Insulin resistance, a key pathophysiological feature of MASLD, can be effectively ameliorated through dietary interventions. The Mediterranean diet, rich in whole grains, fruits, vegetables, legumes, and healthy fats, has shown promising results in improving insulin sensitivity. Several components of the Mediterranean diet, such as monounsaturated fats and polyphenols, exert anti-inflammatory and antioxidant effects, thereby reducing hepatic steatosis and inflammation. Furthermore, this dietary pattern has been associated with a higher likelihood of achieving MASLD remission. In addition to dietary modifications, physical exercise, particularly resistance exercise, plays a crucial role in enhancing metabolic flexibility. Resistance exercise training promotes the utilization of fatty acids as an energy source. It enhances muscle glucose uptake and glycogen storage, thus reducing the burden on the liver to uptake excess blood glucose. Furthermore, resistance exercise stimulates muscle protein synthesis, contributing to an improved muscle-to-fat ratio and overall metabolic health. When implemented synergistically, the Mediterranean diet and resistance exercise can elicit complementary effects in combating MASLD. Combined interventions have demonstrated additive benefits, including greater improvements in insulin resistance, increased metabolic flexibility, and enhanced potential for MASLD remission. This underscores the importance of adopting a multifaceted approach encompassing dietary modifications and regular physical exercise to effectively manage MASLD. This narrative review explores the biological mechanisms of diet and physical exercise in addressing MASLD by targeting insulin resistance and decreased metabolic flexibility.
Collapse
Affiliation(s)
- Sara Paola Mambrini
- Nutrition Science Research Lab, Ospedale S. Giuseppe, Istituto Auxologico Italiano IRCCS, Piancavallo, Italy
| | | | - Santo Colosimo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- PhD School of Nutrition Science, University of Milan, Milan, Italy
| | - Francesco Zarpellon
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Giorgia Pozzi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Davide Furlan
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | - Simona Bertoli
- Nutrition Science Research Lab, Ospedale S. Giuseppe, Istituto Auxologico Italiano IRCCS, Piancavallo, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
2
|
Miyata H, Ishii M, Suehiro F, Komabashiri N, Ikeda N, Sakurai T, Nishimura M. Elucidation of adipogenic differentiation regulatory mechanism in human maxillary/mandibular bone marrow-derived stem cells. Arch Oral Biol 2023; 146:105608. [PMID: 36549198 DOI: 10.1016/j.archoralbio.2022.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study aims to investigate the underlying molecular mechanisms that regulate the adipogenic differentiation of maxillary/mandibular bone marrow-derived mesenchymal stem cells (MBMSCs). DESIGN MBMSCs and iliac bone marrow-derived MSCs (IBMSCs) were compared for osteogenic, chondrogenic, and adipogenic differentiation. Cell surface antigen expression was examined using flow cytometry, and stem cell marker expression was assessed using real-time polymerase chain reaction (PCR). Various adipogenic regulatory factors' expression was evaluated using real-time PCR and western blotting. RESULTS No significant differences in cell surface antigen profiles or stem cell marker expression in MBMSCs and IBMSCs were observed. MBMSCs and IBMSCs displayed similar osteogenic and chondrogenic potentials, whereas MBMSCs showed significantly lower adipogenic potentials than those shown by IBMSCs. Expression of CCAAT/enhancer binding protein β (C/EBPβ), C/EBPδ, early B-cell factor 1 (Ebf-1), and Krüppel-like factor 5 (KLF5), which are early adipogenic differentiation factors, was suppressed in MBMSCs compared to that in IBMSCs. Peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα, which play important roles in the terminal differentiation of adipocytes, was lower in MBMSCs than that in IBMSCs. Furthermore, the level of zinc finger protein 423 (Zfp423), which is involved in the commitment of undifferentiated MSCs to the adipocyte lineage, was significantly lower in MBMSCs than that in IBMSCs. CONCLUSIONS MBMSCs are negatively regulated in the commitment of undifferentiated MSCs to the adipocyte lineage (preadipocytes) as well as in the terminal differentiation of preadipocytes into mature adipocytes. These results may elucidate the site-specific characteristics of MBMSCs.
Collapse
Affiliation(s)
- Haruka Miyata
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Masakazu Ishii
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan.
| | - Fumio Suehiro
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Naohiro Komabashiri
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Nao Ikeda
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Tomoaki Sakurai
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| | - Masahiro Nishimura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate school of Medical and Dental Science, Kagoshima 890-8544, Japan
| |
Collapse
|
3
|
Bond HM, Scicchitano S, Chiarella E, Amodio N, Lucchino V, Aloisio A, Montalcini Y, Mesuraca M, Morrone G. ZNF423: A New Player in Estrogen Receptor-Positive Breast Cancer. Front Endocrinol (Lausanne) 2018; 9:255. [PMID: 29867779 PMCID: PMC5968090 DOI: 10.3389/fendo.2018.00255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/03/2018] [Indexed: 01/13/2023] Open
Abstract
Preventive therapy can target hormone-responsive breast cancer (BC) by treatment with selective estrogen receptor modulators (SERMs) and reduce the incidence of BC. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) with relevant predictive values, SNPs in the ZNF423 gene were associated with decreased risk of BC during SERM therapy, and SNPs in the Cathepsin O gene with an increased risk. ZNF423, which was not previously associated with BC is a multifunctional transcription factor known to have a role in development, neurogenesis, and adipogenesis and is implicated in other types of cancer. ZNF423 is transcriptionally controlled by the homolog ZNF521, early B cell factor transcription factor, epigenetic silencing of the promoter by CpG island hyper-methylation, and also by ZNF423 itself in an auto-regulatory loop. In BC cells, ZNF423 expression is found to be induced by estrogen, dependent on the binding of the estrogen receptor and calmodulin-like 3 to SNPs in ZNP423 intronic sites in proximity to consensus estrogen response elements. ZNF423 has also been shown to play a mechanistic role by trans-activating the tumor suppressor BRCA1 and thus modulating the DNA damage response. Even though recent extensive trial studies did not classify these SNPs with the highest predictive values, for inclusion in polygenic SNP analysis, the mechanism unveiled in these studies has introduced ZNF423 as a factor important in the control of the estrogen response. Here, we aim at providing an overview of ZNF423 expression and functional role in human malignancies, with a specific focus on its implication in hormone-responsive BC.
Collapse
Affiliation(s)
- Heather M. Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Heather M. Bond, ; Maria Mesuraca, ; Giovanni Morrone,
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Laboratory of Medical Oncology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Valeria Lucchino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Heather M. Bond, ; Maria Mesuraca, ; Giovanni Morrone,
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Heather M. Bond, ; Maria Mesuraca, ; Giovanni Morrone,
| |
Collapse
|
4
|
Abstract
The availability of glucose and oxygen are important regulatory elements that help directing stem cell fate. In the undifferentiated state, stem cells, and their artificially reprogrammed equivalent-induced pluripotent stem cells (iPS) are characterized by limited oxidative capacity and active anaerobic glycolysis. Recent studies have shown that pluripotency-a characteristic of staminality-is associated with a poorly developed mitochondrial patrimony, while differentiation is accompanied by an activation of mitochondrial biogenesis. Besides being an important energy source in hypoxia, high glucose level results in hyperosmotic stress. The identification of specific metabolic pathways and biophysical factors that regulate stem cell fate, including high glucose in the extracellular medium, may therefore facilitate reprogramming efficiency and control the differentiation and fate of iPS cells, which are increasingly being explored as therapeutic tools. In this article, we review recent knowledge of the role of glucose metabolism and high glucose level as major anaerobic energy source, and a determinant of osmolarity as possible tools for reprogramming therapies in clinical applications. As in the diabetic setting hyperglycemia negatively affect the stem/progenitor cell fate and likely somatic reprogramming, we also discuss the in vivo potential transferability of the available in vitro findings.
Collapse
|
5
|
Wei S, Zhang L, Zhou X, Du M, Jiang Z, Hausman GJ, Bergen WG, Zan L, Dodson MV. Emerging roles of zinc finger proteins in regulating adipogenesis. Cell Mol Life Sci 2013; 70:4569-84. [PMID: 23760207 PMCID: PMC4100687 DOI: 10.1007/s00018-013-1395-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/22/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
Proteins containing the zinc finger domain(s) are named zinc finger proteins (ZFPs), one of the largest classes of transcription factors in eukaryotic genomes. A large number of ZFPs have been studied and many of them were found to be involved in regulating normal growth and development of cells and tissues through diverse signal transduction pathways. Recent studies revealed that a small but increasing number of ZFPs could function as key transcriptional regulators involved in adipogenesis. Due to the prevalence of obesity and metabolic disorders, the investigation of molecular regulatory mechanisms of adipocyte development must be more completely understood in order to develop novel and long-term impact strategies for ameliorating obesity. In this review, we discuss recent work that has documented that ZFPs are important functional contributors to the regulation of adipogenesis. Taken together, these data lead to the conclusion that ZFPs may become promising targets to combat human obesity.
Collapse
Affiliation(s)
- Shengjuan Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Lifan Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xiang Zhou
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Gary J. Hausman
- Animal Science Department, University of Georgia, Athens, GA 30602-2771 USA
| | - Werner G. Bergen
- Program in Cellular and Molecular Biosciences, Department of Animal Sciences, Auburn University, Auburn, AL 36849 USA
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Michael V. Dodson
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
6
|
Jung SR, Song NJ, Hwang HS, An JJ, Cho YJ, Kweon HY, Kang SW, Lee KG, Yoon K, Kim BJ, Nho CW, Choi SY, Park KW. Silk peptides inhibit adipocyte differentiation through modulation of the Notch pathway in C3H10T1/2 cells. Nutr Res 2012; 31:723-30. [PMID: 22024497 DOI: 10.1016/j.nutres.2011.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 01/17/2023]
Abstract
Silk protein is a biocompatible material that has been used in many biotechnological applications and exhibits body fat-lowering effects. Recent studies have shown that silk peptides increase expression of osteogenic markers in osteoblast-like cells. Because osteogenic and adipogenic differentiation from common mesenchymal progenitor cells are inverse processes and often regulated reciprocally, we hypothesized that silk peptides might suppress adipocyte differentiation. We therefore endeavored to evaluate the effects of silk peptides on adipocyte differentiation in C3H10T1/2 cells. We find that silk peptides inhibit lipid accumulation and morphological differentiation in these cells. Molecular studies show that silk peptides block expression of adipocyte-specific genes such as peroxisome proliferator-activated receptor γ and its targets, including aP2, Cd36, CCAAT enhancer binding proteinα. Silk peptides appear to inhibit adipogenesis by suppression of the Notch pathway, repressing the Notch target genes Hes-1 and Hey-1. In addition, these peptides inhibit endogenous Notch activation, as shown by a reduction in generation of Notch intracellular domain. N-[N-(3.5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butylester, compound E, and WPE-III-31C, which are all known Notch signaling inhibitors, block adipocyte differentiation to an extent similar to silk peptides. Together, our data demonstrate that silk peptides can modulate adipocyte differentiation through inhibition of the Notch signaling and further suggest potential future strategies for treating obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- So-Ra Jung
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|