1
|
Zhu J, Liu J, Bao Z, Cao H, Wang S, Li X, Ning Z, Hoffner S, Hu Y, Davies Forsman L. Acquired drug resistance during the turnaround time for drug susceptibility testing impacts outcome of tuberculosis. Tuberculosis (Edinb) 2023; 140:102341. [PMID: 37086709 DOI: 10.1016/j.tube.2023.102341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND The impacts of acquired resistance to first-line drugs other than rifampicin during turnaround time (TAT) for drug susceptibility testing (DST) on tuberculosis (TB) treatment are unclear. METHOD We performed a prospective cohort study to test acquired resistance to isoniazid, ethambutol and pyrazinamide during TAT for DST as risk factors for prolonged time to sputum culture conversion (SCC) and treatment failure in China. Participants included had a baseline DST result for a Mycobacterium tuberculosis (Mtb) isolate collected at TB diagnosis and a follow-up DST result for a Mtb isolate collected upon baseline DST results availability. Acquired drug resistance was identified by comparing baseline and follow-up DST results. RESULTS This study included 65 patients with acquired resistance Mtb isolates and 130 patients with consistent drug susceptibility profiles. Cox proportional hazard regression analysis demonstrated acquired isoniazid resistance (aHR 0.50, 95%CI: 0.29-0.85) and acquired pyrazinamide resistance (aHR 0.54, 95%CI: 0.36-0.81) were associated with prolonged time to SCC. Moreover, acquired isoniazid resistance (aOR 7.64, 95%CI: 2.39-16.08) and acquired pyrazinamide resistance (aOR 5.71, 95%CI: 2.31-14.12) were independently associated with treatment failure. CONCLUSION Acquired resistance to isoniazid and/or pyrazinamide during TAT for DST was associated with prolonged time to SCC as well as treatment failure.
Collapse
Affiliation(s)
- Jiahui Zhu
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Jia Liu
- The Fifth People's Hospital of Suzhou, Infectious Disease Hospital Affiliated to Soochow University, Suzhou, China
| | - Ziwei Bao
- The Fifth People's Hospital of Suzhou, Infectious Disease Hospital Affiliated to Soochow University, Suzhou, China
| | - Hong Cao
- Department of Tuberculosis Control, Zigong Center for Disease Control and Prevention, Zigong, China
| | - Sainan Wang
- School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Xuliang Li
- School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Zhu Ning
- Department of Tuberculosis Control, Zigong Center for Disease Control and Prevention, Zigong, China
| | - Sven Hoffner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Yi Hu
- School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lina Davies Forsman
- Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
2
|
Zhu J, Bao Z, Xie Y, Werngren J, Hu Y, Davies Forsman L, Bruchfeld J, Hoffner S. Additional drug resistance for Mycobacterium tuberculosis during turnaround time for drug-susceptibility testing in China: A multicenter observational cohort study. Int J Infect Dis 2021; 108:81-88. [PMID: 33862209 DOI: 10.1016/j.ijid.2021.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Although phenotypic drug susceptibility testing (DST) of Mycobacterium tuberculosis (Mtb) takes up to 6-8 weeks, little is known about how drug susceptibility is affected during this period. METHODS We performed a prospective cohort study to investigate the development of drug resistance (DR) during turnaround time (TAT), including 359 pulmonary tuberculosis (PTB) patients with a baseline DST result of an Mtb isolate collected at TB diagnosis and a follow-up DST result of an Mtb isolate collected when baseline DST result was available between 2013 and 2018. Whole-genome sequencing (WGS) was used to differentiate between acquired drug resistance, exogenous reinfection, and mixed infection. RESULTS Among the studied patients, during TAT for DST, 116 (32.3%) developed DR to four first-line drugs (rifampicin, isoniazid, pyrazinamide, ethambutol). Among 116 pairs of isolates included for WGS, 21 pairs were classified as acquired drug resistance with single nucleotide polymorphisms (SNPs) differences less than 12. Four pairs with an intermediate SNPs differences displayed minor differences in related genotypes and were assessed as mixed infection. The remaining 91 pairs had high SNPs differences consistent with exogenous reinfection. CONCLUSIONS The exogenous reinfection of drug-resistant strains played a vital role in the development of DR of Mtb isolates during TAT for DST, highlighting the need for both rapid DST methods and improved infection control.
Collapse
Affiliation(s)
- Jiahui Zhu
- School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ziwei Bao
- The Fifth People's Hospital of Suzhou, Infectious Disease Hospital Affiliated to Soochow University, Suzhou, China
| | - Yan Xie
- Department Tuberculosis Control, Zigong Center for Disease Control and Prevention, Zigong, China
| | - Jim Werngren
- Department of Microbiology, The Public Health Agency of Sweden, Stockholm, Sweden
| | - Yi Hu
- School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China.
| | - Lina Davies Forsman
- Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, Sweden
| | - Judith Bruchfeld
- Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, Sweden
| | - Sven Hoffner
- Department of Global Public Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
3
|
Khawbung JL, Nath D, Chakraborty S. Drug resistant Tuberculosis: A review. Comp Immunol Microbiol Infect Dis 2020; 74:101574. [PMID: 33249329 DOI: 10.1016/j.cimid.2020.101574] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) was announced as a global emergency in 1993. There was an alarming counter attack of TB worldwide. However, when it was known that TB can be cured completely, the general public became ignorant towards the infection. The pathogenic organism Mycobacterium tuberculosis continuously evolved to resist the antagonist drugs. This has led to the outbreak of resistant strain that gave rise to "Multi Drug Resistant-Tuberculosis" and "Extensively Drug Resistant Tuberculosis" that can still be cured with a lower success rate. While the mechanism of resistance proceeds further, it ultimately causes unmanageable totally drug resistant TB (TDR-TB). Studying the molecular mechanisms underlying the resistance to drugs would help us grasp the genetics and pathophysiology of the disease. In this review, we present the molecular mechanisms behind Mycobacterium tolerance to drugs and their approach towards the development of multi-drug resistant, extremely drug resistant and totally drug resistant TB.
Collapse
Affiliation(s)
| | - Durbba Nath
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
4
|
Advanced integrative sensing technologies for detection of drug-resistant tuberculosis in point-of-care settings. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
5
|
Nguyen TNA, Anton-Le Berre V, Bañuls AL, Nguyen TVA. Molecular Diagnosis of Drug-Resistant Tuberculosis; A Literature Review. Front Microbiol 2019; 10:794. [PMID: 31057511 PMCID: PMC6477542 DOI: 10.3389/fmicb.2019.00794] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Drug-resistant tuberculosis is a global health problem that hinders the progress of tuberculosis eradication programs. Accurate and early detection of drug-resistant tuberculosis is essential for effective patient care, for preventing tuberculosis spread, and for limiting the development of drug-resistant strains. Culture-based drug susceptibility tests are the gold standard method for the detection of drug-resistant tuberculosis, but they are time-consuming and technically challenging, especially in low- and middle-income countries. Nowadays, different nucleic acid-based assays that detect gene mutations associated with resistance to drugs used to treat tuberculosis are available. These tests vary in type and number of targets and in sensitivity and specificity. In this review, we will describe the available molecular tests for drug-resistant tuberculosis detection and discuss their advantages and limitations.
Collapse
Affiliation(s)
- Thi Ngoc Anh Nguyen
- UMR MIVEGEC, Institute of Research for Development, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France.,Laboratory of Tuberculosis, Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam.,LMI Drug Resistance in South East Asia, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | | | - Anne-Laure Bañuls
- UMR MIVEGEC, Institute of Research for Development, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France.,LMI Drug Resistance in South East Asia, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Thi Van Anh Nguyen
- Laboratory of Tuberculosis, Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam.,LMI Drug Resistance in South East Asia, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| |
Collapse
|
6
|
Molecular analysis of pyrazinamide resistance in Mycobacterium tuberculosis in Vietnam highlights the high rate of pyrazinamide resistance-associated mutations in clinical isolates. Emerg Microbes Infect 2017; 6:e86. [PMID: 29018250 PMCID: PMC5658769 DOI: 10.1038/emi.2017.73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 07/16/2017] [Accepted: 08/06/2017] [Indexed: 11/25/2022]
Abstract
Pyrazinamide (PZA) is a key antibiotic in current anti-tuberculosis regimens. Although the WHO has stressed the urgent need to obtain data on PZA resistance, in high tuberculosis burden countries, little is known about the level of PZA resistance, the genetic basis of such resistance or its link with Mycobacterium tuberculosis families. In this context, this study assessed PZA resistance through the molecular analysis of 260 Vietnamese M. tuberculosis isolates. First-line drug susceptibility testing, pncA gene sequencing, spoligotyping and mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing were performed. Overall, the pncA mutation frequency was 38.1% (99 out of 260 isolates) but was higher than 72% (89 out of 123 isolates) in multidrug and quadruple-drug resistant isolates. Many different pncA mutations (71 types) were detected, of which 55 have been previously described and 50 were linked to PZA resistance. Among the 16 novel mutations, 14 are likely to be linked to PZA resistance because of their mutation types or codon positions. Genotype analysis revealed that PZA resistance can emerge in any M. tuberculosis cluster or family, although the mutation frequency was the highest in Beijing family isolates (47.7%, 62 out of 130 isolates). These data highlight the high rate of PZA resistance-associated mutations in M. tuberculosis clinical isolates in Vietnam and bring into question the use of PZA for current and future treatment regimens of multidrug-resistant tuberculosis without PZA resistance testing.
Collapse
|
7
|
Nguyen HQ, Nguyen NV, Contamin L, Tran THT, Vu TT, Nguyen HV, Nguyen NLT, Nguyen ST, Dang AD, Bañuls AL, Nguyen VAT. Quadruple-first line drug resistance in Mycobacterium tuberculosis in Vietnam: What can we learn from genes? INFECTION GENETICS AND EVOLUTION 2017; 50:55-61. [PMID: 28214557 DOI: 10.1016/j.meegid.2017.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
In Vietnam, a country with high tuberculosis (137/100.000 population) and multidrug-resistant (MDR)-TB burdens (7.8/100.000 population), little is known about the molecular signatures of drug resistance in general and more particularly of second line drug (SLD) resistance. This study is specifically focused on Mycobacterium tuberculosis isolates resistant to four first-line drugs (FLDs) that make TB much more difficult to treat. The aim is to determine the proportion of SLD resistance in these quadruple drug resistant isolates and the genetic determinants linked to drug resistance to better understand the genetic processes leading to quadruple and extremely drug resistance (XDR). 91 quadruple (rifampicin, isoniazid, ethambutol and streptomycin) FLD resistant and 55 susceptible isolates were included. Spoligotyping and 24-locus MIRU-VNTR techniques were performed and 9 genes and promoters linked to FLD and SLD resistance were sequenced. SLD susceptibility testing was carried out on a subsample of isolates. High proportion of quadruple-FLD resistant isolates was resistant to fluoroquinolones (27%) and second-line injectable drugs (30.2%) by drug susceptibility testing. The sequencing revealed high mutation diversity with prevailing mutations at positions katG315, inhA-15, rpoB531, embB306, rrs1401, rpsL43 and gyrA94. The sensitivity and specificity were high for most drug resistances (>86%), but the sensitivity was lower for injectable drug resistances (<69%). The mutation patterns revealed 23.1% of pre-XDR and 7.7% of XDR isolates, mostly belonging to Beijing family. The genotypic diversity and the variety of mutations reflect the existence of various evolutionary paths leading to FLD and SLD resistance. Nevertheless, particular mutation patterns linked to high-level resistance and low fitness costs seem to be favored.
Collapse
Affiliation(s)
- Huy Quang Nguyen
- UMR MIVEGEC (224 IRD-5290 CNRS-Université de Montpellier), Institute of Research for Development, Montpellier, France; Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam; Department of Biotechnology-Pharmacology, University of Science and Technology of Hanoi, Hanoi, Viet Nam; LMI Drug Resistance in South East Asia (DRISA), NIHE, Hanoi, Viet Nam.
| | - Nhung Viet Nguyen
- Viet Nam National Tuberculosis Programme, Hanoi, Viet Nam; Viet Nam Association for Tuberculosis and Lung Disease, Hanoi, Viet Nam
| | - Lucie Contamin
- UMR MIVEGEC (224 IRD-5290 CNRS-Université de Montpellier), Institute of Research for Development, Montpellier, France; Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam; LMI Drug Resistance in South East Asia (DRISA), NIHE, Hanoi, Viet Nam
| | - Thanh Hoa Thi Tran
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Thuong Thi Vu
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Hung Van Nguyen
- Department of Microbiology, National Lung Hospital, Hanoi, Viet Nam
| | | | - Son Thai Nguyen
- Department of Microbiology, Military Medical University, Hanoi, Viet Nam
| | - Anh Duc Dang
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Anne-Laure Bañuls
- UMR MIVEGEC (224 IRD-5290 CNRS-Université de Montpellier), Institute of Research for Development, Montpellier, France; Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam; LMI Drug Resistance in South East Asia (DRISA), NIHE, Hanoi, Viet Nam
| | - Van Anh Thi Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| |
Collapse
|