1
|
Goebel MC, Trautner BW, Grigoryan L. The Five Ds of Outpatient Antibiotic Stewardship for Urinary Tract Infections. Clin Microbiol Rev 2021; 34:e0000320. [PMID: 34431702 PMCID: PMC8404614 DOI: 10.1128/cmr.00003-20] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Urinary tract infections (UTI) are one of the most common indications for antibiotic prescriptions in the outpatient setting. Given rising rates of antibiotic resistance among uropathogens, antibiotic stewardship is critically needed to improve outpatient antibiotic use, including in outpatient clinics (primary care and specialty clinics) and emergency departments. Outpatient clinics are in general a neglected practice area in antibiotic stewardship programs, yet most antibiotic use in the United States is in the outpatient setting. This article provides a comprehensive review of antibiotic stewardship strategies for outpatient UTI in the adult population, with a focus on the "five Ds" of stewardship for UTI, including right diagnosis, right drug, right dose, right duration, and de-escalation. Stewardship interventions that have shown success for improving prescribing for outpatient UTI are discussed, including diagnostic stewardship strategies, such as reflex urine cultures, computerized decision support systems, and modified reporting of urine culture results. Among the many challenges to achieving stewardship for UTI in the outpatient setting, some of the most important are diagnostic uncertainty, increasing antibiotic resistance, limitations of guidelines, and time constraints of stewardship personnel and front-line providers. This article presents a stewardship framework, built on current evidence and expert opinion, that clinicians can use to guide their own outpatient management of UTI.
Collapse
Affiliation(s)
- Melanie C. Goebel
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara W. Trautner
- Center for Innovations in Quality, Effectiveness, and Safety (IQuESt), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
- Section of Health Services Research, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Larissa Grigoryan
- Department of Family and Community Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Lomovskaya O, Tsivkovski R, Sun D, Reddy R, Totrov M, Hecker S, Griffith D, Loutit J, Dudley M. QPX7728, An Ultra-Broad-Spectrum B-Lactamase Inhibitor for Intravenous and Oral Therapy: Overview of Biochemical and Microbiological Characteristics. Front Microbiol 2021; 12:697180. [PMID: 34290688 PMCID: PMC8287861 DOI: 10.3389/fmicb.2021.697180] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 12/04/2022] Open
Abstract
QPX7728 is a novel β-lactamase inhibitor (BLI) that belongs to a class of cyclic boronates. The first member of this class, vaborbactam, is a BLI in the recently approved Vabomere (meropenem-vaborbactam). In this paper we provide the overview of the biochemical, structural and microbiological studies that were recently conducted with QPX7728. We show that QPX7728 is an ultra-broad-spectrum β-lactamase inhibitor with the broadest spectrum of inhibition reported to date in a single BLI molecule; in addition to potent inhibition of clinically important serine β-lactamases, including Class A and D carbapenemases from Enterobacterales and notably, diverse Class D carbapenemases from Acinetobacter, it also inhibits many metallo β-lactamases. Importantly, it is minimally affected by general intrinsic resistance mechanisms such as efflux and porin mutations that impede entry of drugs into gram-negative bacteria. QPX7728 combinations with several intravenous (IV) β-lactam antibiotics shows broad coverage of Enterobacterales, Acinetobacter baumannii and Pseudomonas aeruginosa, including strains that are resistant to other IV β-lactam-BLI combinations, e.g., ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam and imipenem-relebactam that were recently approved for clinical use. Based on studies with P. aeruginosa, different partner β-lactams in combination with QPX7728 may be optimal for the coverage of susceptible organisms. This provides microbiological justification for a stand-alone BLI product for co-administration with different β-lactams. QPX7728 can also be delivered orally; thus, its ultra-broad β-lactamase inhibition spectrum and other features could be also applied to oral QPX7728-based combination products. Clinical development of QPX7728 has been initiated.
Collapse
Affiliation(s)
| | | | - Dongxu Sun
- Qpex Biopharma, Inc., San Diego, CA, United States
| | - Raja Reddy
- Qpex Biopharma, Inc., San Diego, CA, United States
| | | | - Scott Hecker
- Qpex Biopharma, Inc., San Diego, CA, United States
| | | | | | | |
Collapse
|
3
|
Adamus-Białek W, Wawszczak M, Arabski M, Majchrzak M, Gulba M, Jarych D, Parniewski P, Głuszek S. Ciprofloxacin, amoxicillin, and aminoglycosides stimulate genetic and phenotypic changes in uropathogenic Escherichia coli strains. Virulence 2020; 10:260-276. [PMID: 30938219 PMCID: PMC6527016 DOI: 10.1080/21505594.2019.1596507] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antibiotic therapy and its consequences in bacterial and human aspects are widely investigated. Despite this, the emergence of new multidrug resistant bacteria is still a current problem. The scope of our work included the observation of changes among uropathogenic Escherichia coli strains after the treatment with a subinhibitory concentration of different antibiotics. The sensitive strains with or without virulence factors were incubated with amoxicillin, ciprofloxacin, gentamycin, or tobramycin. After each passage, the E. coli derivatives were compared to their wild types based on their susceptibility profiles, virulence genes, biofilm formations and the fingerprint profiles of PCR products amplified with using the (N)(6)(CGG)(4) primer. It turned out that antibiotics caused significant changes in the repertoire of bacterial virulence and biofilm formation, corresponding to acquired cross-resistance. The genomic changes among the studied bacteria were reflected in the changed profiles of the CGG-PCR products. In conclusion, the inappropriate application of antibiotics may cause a rapid rise of Multidrug Resistant (MDR) strains and give bacteria a chance to modulate their own pathogenicity. This phenomenon has been easily observed among uropathogenic E. coli strains and it is one of the main reasons for recurrent infections of the urinary tract.
Collapse
Affiliation(s)
- Wioletta Adamus-Białek
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Monika Wawszczak
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Michał Arabski
- b Department of Biochemistry & Genetics , Jan Kochanowski University , Kielce , Poland
| | - Michał Majchrzak
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Martyna Gulba
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Dariusz Jarych
- c Institute of Medical Biology, Polish Academy of Sciences , Łódź , Poland
| | - Paweł Parniewski
- c Institute of Medical Biology, Polish Academy of Sciences , Łódź , Poland
| | - Stanisław Głuszek
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| |
Collapse
|
4
|
Critchley IA, Cotroneo N, Pucci MJ, Mendes R. The burden of antimicrobial resistance among urinary tract isolates of Escherichia coli in the United States in 2017. PLoS One 2019; 14:e0220265. [PMID: 31821338 PMCID: PMC6903708 DOI: 10.1371/journal.pone.0220265] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/25/2019] [Indexed: 12/02/2022] Open
Abstract
Urinary tract infections (UTIs) caused by Escherichia coli have been historically managed with oral antibiotics including the cephalosporins, fluoroquinolones and trimethoprim-sulfamethoxazole. The use of these agents is being compromised by the increase in extended spectrum β-lactamase (ESBL)-producing organisms, mostly caused by the emergence and clonal expansion of E. coli multilocus sequence typing (ST) 131. In addition, ESBL isolates show co-resistance to many of oral agents. Management of UTIs caused by ESBL and fluoroquinolone-resistant organisms is becoming increasingly challenging to treat outside of the hospital setting with clinicians having to resort to intravenous agents. The aim of this study was to assess the prevalence of ESBL phenotypes and genotypes among UTI isolates of E. coli collected in the US during 2017 as well as the impact of co-resistance to oral agents such as the fluoroquinolones and trimethoprim-sulfamethoxazole. The national prevalence of ESBL phenotypes of E. coli was 15.7% and was geographically distributed across all nine Census regions. Levofloxacin and trimethoprim-sulfamethoxazole-resistance rates were ≥ 24% among all isolates and this co-resistance phenotype was considerably higher among isolates showing an ESBL phenotype (≥ 59.2%) and carrying blaCTX-M-15 (≥ 69.5%). The agents with the highest potency against UTI isolates of E. coli, including ESBL isolates showing cross-resistance across oral agents, were the intravenous carbapenems. The results of this study indicate that new oral options with the spectrum and potency similar to the intravenous carbapenems would address a significant unmet need for the treatment of UTIs in an era of emergence and clonal expansion of ESBL isolates resistant to several classes of antimicrobial agents, including oral options.
Collapse
Affiliation(s)
- Ian A. Critchley
- Spero Therapeutics, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Nicole Cotroneo
- Spero Therapeutics, Cambridge, Massachusetts, United States of America
| | - Michael J. Pucci
- Spero Therapeutics, Cambridge, Massachusetts, United States of America
| | - Rodrigo Mendes
- JMI Laboratories, North Liberty, Iowa, United States of America
| |
Collapse
|
5
|
Comparative Epidemiology and Resistance Trends of Proteae in Urinary Tract Infections of Inpatients and Outpatients: A 10-Year Retrospective Study. Antibiotics (Basel) 2019; 8:antibiotics8030091. [PMID: 31373311 PMCID: PMC6783862 DOI: 10.3390/antibiotics8030091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022] Open
Abstract
Compared with infections caused by other bacterial pathogens, urinary tract infections (UTIs) caused by Proteae are often more severe and associated with a higher rate of recurrence, sequelae, and pyelonephritis. The aim of this retrospective study was to assess and compare the prevalence of UTIs caused by different species of the Proteae tribe (namely Proteus, Morganella and Providencia species) and the antibiotic resistance levels isolated from inpatients and outpatients in a primary- and tertiary-care teaching hospital in the Southern Great Plain of Hungary, during a 10-year study period. To evaluate the resistance trends of isolated strains, amoxicillin/clavulanic acid, ceftriaxone, meropenem, ertapenem, gentamicin, ciprofloxacin, and fosfomycin were chosen as indicator antibiotics, based on local antibiotic utilization data. Members of Proteae were more frequently isolated in the case of inpatients (7.20 ± 1.74% vs. 5.00 ± 0.88%; p = 0.0031), P. mirabilis was the most frequently isolated member of the group. The ratio of resistant strains to sulfamethoxazole/trimethoprim, ciprofloxacin, ceftriaxone, and fosfomycin was significantly higher in the inpatient group. In the case of amoxicillin/clavulanic acid, ceftriaxone, ciprofloxacin, and sulfamethoxazole/trimethoprim, the ratio of resistant isolates was markedly higher between 2013–2017 (p < 0.01). Resistance developments of Proteae, coupled with their intrinsic non-susceptibility to several antibiotics (tetracyclines, colistin, nitrofurantoin) severely limits the number of therapeutic alternatives, especially for outpatients.
Collapse
|