1
|
Abdul Manan M. Progress in Probiotic Science: Prospects of Functional Probiotic-Based Foods and Beverages. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:5567567. [PMID: 40259922 PMCID: PMC12011469 DOI: 10.1155/ijfo/5567567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
This comprehensive review explores the evolving role of probiotic-based foods and beverages, highlighting their potential as functional and "future foods" that could significantly enhance nutrition, health, and overall well-being. These products are gaining prominence for their benefits in gut health, immune support, and holistic wellness. However, their future success depends on addressing critical safety concerns and navigating administrative complexities. Ensuring that these products "do more good than harm" involves rigorous evaluations of probiotic strains, particularly those sourced from the human gastrointestinal tract. Lactic acid bacteria (LABs) serve as versatile and effective functional starter cultures for the development of probiotic foods and beverages. The review emphasizes the role of LABs as functional starter cultures and the development of precision probiotics in advancing these products. Establishing standardized guidelines and transparent practices is essential, requiring collaboration among regulatory bodies, industry stakeholders, and the scientific community. The review underscores the importance of innovation in developing "friendly bacteria," "super probiotics," precision fermentation, and effective safety assessments. The prospects of functional probiotic-based foods and beverages rely on refining these elements and adapting to emerging scientific advancements. Ultimately, empowering consumers with accurate information, fostering innovation, and maintaining stringent safety standards will shape the future of these products as trusted and beneficial components of a health-conscious society. Probiotic-based foods and beverages, often infused with LABs, a "friendly bacteria," are emerging as "super probiotics" and "future foods" designed to "do more good than harm" for overall health.
Collapse
Affiliation(s)
- Musaalbakri Abdul Manan
- Food Science and Technology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), MARDI Headquarters, Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Kulig K, Kowalik K, Surowiec M, Karnas E, Barczyk-Woznicka O, Zuba-Surma E, Pyza E, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. Isolation and Characteristics of Extracellular Vesicles Produced by Probiotics: Yeast Saccharomyces boulardii CNCM I-745 and Bacterium Streptococcus salivarius K12. Probiotics Antimicrob Proteins 2024; 16:936-948. [PMID: 37209320 PMCID: PMC11126510 DOI: 10.1007/s12602-023-10085-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Numerous probiotic microorganisms have repeatedly been shown to produce nanometer-sized structures named extracellular vesicles (EVs). Recently, it has been suggested that similarly to whole microbial cells, EVs produced by probiotics may also demonstrate health benefits to the host, while their application does not involve the risk of infection caused by live microorganisms. In this work, we isolated EVs from two probiotic species originating from different taxonomic domains - yeast Saccharomyces boulardii CNCM I-745 and bacterium Streptococcus salivarius K12. The diameters of S. boulardii EVs were about 142 nm and for S. salivarius EVs about 123 nm. For S. boulardii EVs, 1641 proteins and for S. salivarius EVs, 466 proteins were identified with a liquid chromatography-coupled tandem mass spectrometry and then functionally classified. In both microbial species, metabolic proteins significantly contributed to the cargo of EVs comprising 25% and 26% of all identified vesicular proteins for fungi and bacteria, respectively. Moreover, enzymes associated with cell wall rearrangement, including enzymatically active glucanases, were also identified in EVs. Furthermore, probiotic EVs were shown to influence host cells and stimulate the production of IL-1β and IL-8 by the human monocytic cell line THP-1, and, at the same time, did not cause any remarkable reduction in the survival rate of Galleria mellonella larvae in this invertebrate model commonly used to evaluate microbial EV toxicity. These observations suggest that the EVs produced by the investigated probiotic microorganisms may be promising structures for future use in pro-health applications.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Kowalik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
3
|
DI Pierro F, Guasti L, Zerbinati N, Bertuccioli A, Risso P, DE Palma AA, Calloni AG, Lukezic M, Baggi E, Colombo M. Role of S. salivarius K12 in the prevention of URTI and AGE in nursery-aged children. Minerva Med 2023; 114:878-880. [PMID: 37768683 DOI: 10.23736/s0026-4806.23.08920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Affiliation(s)
- Francesco DI Pierro
- Scientific and Research Department, Velleja Research, Milan, Italy -
- Department of Medicine and Surgery, University of Insubria, Varese, Italy -
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | - Paolo Risso
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Van Holm W, Lauwens K, De Wever P, Schuermans A, Zayed N, Pamuk F, Saghi M, Fardim P, Bernaerts K, Boon N, Teughels W. Probiotics for oral health: do they deliver what they promise? Front Microbiol 2023; 14:1219692. [PMID: 37485503 PMCID: PMC10358723 DOI: 10.3389/fmicb.2023.1219692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Probiotics have demonstrated oral health benefits by influencing the microbiome and the host. Although promising, their current use is potentially constrained by several restrictions. One such limiting factor lies in the prevailing preparation of a probiotic product. To commercialize the probiotic, a shelf stable product is achieved by temporarily inactivating the live probiotic through drying or freeze drying. Even though a lyophilized probiotic can be kept dormant for an extended period of time, their viability can be severely compromised, making their designation as probiotics questionable. Additionally, does the application of an inactive probiotic directly into the oral cavity make sense? While the dormancy may allow for survival on its way towards the gut, does it affect their capacity for oral colonisation? To evaluate this, 21 probiotic product for oral health were analysed for the number of viable (probiotic), culturable (CFU) and dead (postbiotic) cells, to verify whether the commercial products indeed contain what they proclaim. After isolating and uniformly lyophilizing three common probiotic species in a simple yet effective lyoprotective medium, the adhesion to saliva covered hydroxyapatite discs of lyophilized probiotics was compared to fresh or reactivated lyophilized probiotics. Unfortunately, many of the examined products failed to contain the claimed amounts of viable cells, but also the strains used were inadequately characterized and lacked clinical evidence for that unknown strain, questioning their label of a 'probiotic'. Additionally, lyophilized probiotics demonstrated low adhesive capacity compared to their counterparts, prompting the question of why fresh or reactivated probiotics are not currently used.
Collapse
Affiliation(s)
- Wannes Van Holm
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
- Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Ghent, Belgium
| | - Katalina Lauwens
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
| | - Pieter De Wever
- Bio-and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven KU Leuven, Leuven, Belgium
| | | | - Naiera Zayed
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
- Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Ghent, Belgium
- Faculty of Pharmacy, Menoufia University, Shebeen El-Kom, Egypt
| | - Ferda Pamuk
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
| | - Mehraveh Saghi
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
| | - Pedro Fardim
- Bio-and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- Bio-and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven KU Leuven, Leuven, Belgium
| | - Nico Boon
- Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Ghent, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
In Vitro Evaluation of Commercial Probiotic Products Containing Streptococcus salivarius K12 by Assessment of Probiotic Viability and Inhibitory Potency against Respiratory Pathogens. Processes (Basel) 2023. [DOI: 10.3390/pr11020622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Upper respiratory infections (URI) are the most frequent illnesses, especially in children. The majority of those infections are prescribed broad-spectrum antibiotics, which are associated with various side effects and with the increase in multi-drug-resistant strains. A promising alternative approach is the administration of the probiotic strain Streptococcus salivarius K12 (SSK12) that colonizes the upper respiratory tract (URT) and produces the salivaricins A2 and B, which strongly antagonize the growth of key respiratory pathogens. However, since for food supplements no quality controls of the active probiotic ingredient are mandatory, the efficacy of commercial products containing SSK12 may vary. This study aimed to investigate the in vitro efficacy of several commercial SSK12-containing probiotics, positioned for the prevention of respiratory infections. The parameters evaluated to determine the in vitro efficacy included the viability of the probiotic bacterial strain and the minimum inhibitory dilution (MID) of the probiotic, determined by the agar spot method, against the pathogenic/potential pathogenic bacterial strains Streptococcus pyogenes FF22 and Micrococcus luteus T18. All tests were carried out both 12 and 24 months after manufacturing (AM) for each commercial product. The viability ranged from 9 × 108 to 4.4 × 109 CFU/serving at 12 months AM and from 8.5 × 107 to 2.8 × 109 CFU/serving at 24 months AM. The MID was, in general, positively correlated with the probiotic bacterium viability and varied between the commercial products, ranging from 10−5 to 10−7 at 12 months AM and from 10−4 to 10−7 at 24 months AM. Moreover, the inhibition zones related to the two indicator strains were variable in diameter for different products. The high variation of the in vitro efficacy of commercial products containing SSK12 may explain the different results reported in the literature regarding the clinical benefits of these preparations, and the determination of this parameter may be useful to evaluate the quality of probiotic products containing this bacterial strain.
Collapse
|
6
|
Kumar V, Naik B, Kumar A, Khanduri N, Rustagi S, Kumar S. Probiotics media: significance, challenges, and future perspective - a mini review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022. [DOI: 10.1186/s43014-022-00098-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractThe health benefits associated with probiotics have increased their application in pharmaceutical formulations and functional food development. High production of probiotic biomass requires a cost-effective production method and nutrient media optimization. The biomass production of probiotics can be enhanced by optimizing growth parameters such as substrate, pH, incubation time, etc. For economical industrial production of probiotic biomass, it is required to design a new medium with low cost. Wastes from the food industries are promising components for the development of the low-cost medium. Industrial wastes such as cheese whey and corn steep liquor are excellent examples of reliable sources of nitrogen for the biomass production of probiotic bacteria. The increased yield of biomass reduced the cost of production. This review focuses on the importance of probiotic media for biomass production and its challenges.
Graphical Abstract
Collapse
|
7
|
Di Pierro F, Iqtadar S, Mumtaz SU, Bertuccioli A, Recchia M, Zerbinati N, Khan A. Clinical Effects of Streptococcus salivarius K12 in Hospitalized COVID-19 Patients: Results of a Preliminary Study. Microorganisms 2022; 10:microorganisms10101926. [PMID: 36296202 PMCID: PMC9609702 DOI: 10.3390/microorganisms10101926] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Anatomical and physiological considerations indicate that the oral cavity is a primary source of the lung microbiota community, and recent studies have shown that the microbiota in the lungs contributes to immunological homeostasis, potentially altering the organ’s susceptibility to viral infection, including SARS-CoV-2. It has been proposed that, in the case of viral infection, lung Gram-negative bacteria could promote the cytokine cascade with a better performance than a microbiota mainly constituted by Gram-positive bacteria. Recent observations also suggest that Prevotella-rich oral microbiotas would dominate the oral cavity of SARS-CoV-2-infected patients. In comparison, Streptococcus-rich microbiotas would dominate the oral cavity of healthy people. To verify if the modulation of the oral microbiota could have an impact on the current coronavirus disease, we administered for 14 days a well-recognized and oral-colonizing probiotic (S. salivarius K12) to hospitalized COVID-19 patients. The preliminary results of our randomized and controlled trial seem to prove the potential role of this oral strain in improving the course of the main markers of pathology, as well as its ability to apparently reduce the death rate from COVID-19. Although in a preliminary and only circumstantial way, our results seem to confirm the hypothesis of a direct involvement of the oral microbiota in the construction of a lung microbiota whose taxonomic structure could modulate the inflammatory processes generated at the pulmonary and systemic level by a viral infection.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20100 Milan, Italy
- Digestive Endoscopy, Fondazione Poliambulanza, 25133 Brescia, Italy
- Correspondence: ; Tel.: +39-0523-510848; Fax: +39-0523-511894
| | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan
| | - Sami Ullah Mumtaz
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan
| | - Alexander Bertuccioli
- Department of Biomolecular Sciences (DISB), University of Urbino, 61029 Urbino, Italy
| | - Martino Recchia
- Medistat, Unità di Epidemiologia Clinica e Biostatistica, 20100 Milan, Italy
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Amjad Khan
- Nuffield Division of Clinical and Laboratory Sciences (NDCLS), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
8
|
Lawrence GW, McCarthy N, Walsh CJ, Kunyoshi TM, Lawton EM, O’Connor PM, Begley M, Cotter PD, Guinane CM. Effect of a bacteriocin-producing Streptococcus salivarius on the pathogen Fusobacterium nucleatum in a model of the human distal colon. Gut Microbes 2022; 14:2100203. [PMID: 35877697 PMCID: PMC9318236 DOI: 10.1080/19490976.2022.2100203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome is a vast reservoir of microbes, some of which produce antimicrobial peptides called bacteriocins that may inhibit specific bacteria associated with disease. Fusobacterium nucleatum is an emerging human bacterial pathogen associated with gastrointestinal diseases including colorectal cancer (CRC). In this study, fecal samples of healthy donors were screened for potential bacteriocin-producing probiotics with antimicrobial activity against F. nucleatum. A novel isolate, designated as Streptococcus salivarius DPC6993 demonstrated a narrow-spectrum of antimicrobial activity against F. nucleatum in vitro. In silico analysis of the S. salivarius DPC6993 genome revealed the presence of genes involved in the production of the bacteriocins salivaricin A5 and salivaricin B. After 6 h in a colon fermentation model, there was a significant drop in the number of F. nucleatum in samples that had been simultaneously inoculated with S. salivarius DPC6993 + F. nucleatum DSM15643 compared to those inoculated with F. nucleatum DSM15643 alone (mean ± SD: 9243.3 ± 3408.4 vs 29688.9 ± 4993.9 copies/μl). Furthermore, 16S rRNA amplicon analysis revealed a significant difference in the mean relative abundances of Fusobacterium between samples inoculated with both S. salivarius DPC6993 and F. nucleatum DSM15643 (0.05%) and F. nucleatum DSM15643 only (0.32%). Diversity analysis indicated minimal impact exerted by S. salivarius DPC6993 on the surrounding microbiota. Overall, this study highlights the ability of a natural gut bacterium to target a bacterial pathogen associated with CRC. The specific targeting of CRC-associated pathogens by biotherapeutics may ultimately reduce the risk of CRC development and positively impact CRC outcomes.
Collapse
Affiliation(s)
- Garreth W. Lawrence
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Niamh McCarthy
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Calum J. Walsh
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | | | - Paula M. O’Connor
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Paul D. Cotter
- Food Biosciences, Teagasc Food Research Centre Moorepark, Cork, Ireland,VistaMilk SFI Research Centre, Moorepark, Fermoy, Cork, Ireland,Paul D. Cotter Food Biosciences, Teagasc Food Research Centre Moorepark, APC Microbiome Ireland, Cork, Ireland
| | - Caitriona M. Guinane
- Department of Biological Sciences, Munster Technological University, Cork, Ireland,CONTACT Caitriona M. Guinane Department of Biological Sciences, Munster Technological University, Cork, Ireland
| |
Collapse
|
9
|
Trukhan DI, Sulimov AF, Trukhan LY. Changes in the organs and tissues of the oral cavity in the new coronavirus infection (COVID-19): A review. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.5.201755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
SARS-CoV-2 infection can cause changes in the organs and tissues of the oral cavity, which is associated with a wide distribution of angiotensin-converting enzyme type 2 in the oral cavity, mainly epithelial cells of the oral mucosa, gums and fibroblasts of the periodontal ligament. Thus, the oral mucosa is susceptible to SARS-CoV-2 infection and may act as a gateway for the virus, as well as a reservoir for SARS-CoV-2. We searched the literature for the period from the beginning of the pandemic until May 30, 2022, devoted to the study of changes in the organs and tissues of the oral cavity with a new coronavirus infection (COVID-19) in the electronic search engines PubMed/MEDLINE and Scopus. A special place in the study of changes in the organs and tissues of the oral cavity with a new coronavirus infection (COVID-19) is occupied by periodontal pathology. A number of reviews and clinical studies conclude the importance of good oral hygiene and periodontal health as an important aspect of COVID-19 prevention and management. Oral probiotics can be considered as a promising direction for correcting changes in organs and tissues of the oral cavity in COVID-19.
Collapse
|
10
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Sijtsma L, Suarez JE, Sundh I, Vlak J, Barizzone F, Hempen M, Correia S, Herman L. Update of the list of QPS-recommended microbiological agents intentionally added to food or feed as notified to EFSA 16: suitability of taxonomic units notified to EFSA until March 2022. EFSA J 2022; 20:e07408. [PMID: 35898292 PMCID: PMC9310698 DOI: 10.2903/j.efsa.2022.7408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge, safety concerns and occurrence of antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Of the 50 microorganisms notified to EFSA in October 2021 to March 2022 (inclusive), 41 were not evaluated: 10 filamentous fungi, 1 Enterococcus faecium, 1 Clostridium butyricum, 3 Escherichia coli and 1 Streptomyces spp. because are excluded from QPS evaluation, and 25 TUs that have already a QPS status. Nine notifications, corresponding to seven TUs were evaluated: four of these, Streptococcus salivarius, Companilactobacillus formosensis, Pseudonocardia autotrophica and Papiliotrema terrestris, being evaluated for the first time. The other three, Microbacterium foliorum, Pseudomonas fluorescens and Ensifer adhaerens were re-assessed. None of these TUs were recommended for QPS status: Ensifer adhaerens, Microbacterium foliorum, Companilactobacillus formosensis and Papiliotrema terrestris due to a limited body of knowledge, Streptococcus salivarius due to its ability to cause bacteraemia and systemic infection that results in a variety of morbidities, Pseudonocardia autotrophica due to lack of body of knowledge and uncertainty on the safety of biologically active compounds which can be produced, and Pseudomonas fluorescens due to possible safety concerns.
Collapse
|
11
|
Li X, Wang Q, Hu X, Liu W. Current Status of Probiotics as Supplements in the Prevention and Treatment of Infectious Diseases. Front Cell Infect Microbiol 2022; 12:789063. [PMID: 35360101 PMCID: PMC8964067 DOI: 10.3389/fcimb.2022.789063] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
Abstract
Probiotics play an important role against infectious pathogens via their effects on the epithelium, the production of antimicrobial compounds, and competitive exclusion. Administration of probiotic supplements may reduce the risk of infectious diseases and the use of antibiotics, hence contributing to a reduction or a delay of the development of multi-resistant bacteria. Infection is a constant concern for people who experience recurrent infections, and antibiotic treatment usually fails due to antibiotic resistance. Therefore, an infection can lead to severe illness and hospitalization if left untreated. A growing number of studies have demonstrated promising results for a variety of probiotic strains used to prevent or treat acute and recurrent infectious diseases, but additional standardized clinical research is needed.
Collapse
Affiliation(s)
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
12
|
Picó-Monllor JA, Ruzafa-Costas B, Núñez-Delegido E, Sánchez-Pellicer P, Peris-Berraco J, Navarro-Lopez V. Selection of Probiotics in the Prevention of Respiratory Tract Infections and Their Impact on Occupational Health: Scoping Review. Nutrients 2021; 13:4419. [PMID: 34959970 PMCID: PMC8705755 DOI: 10.3390/nu13124419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022] Open
Abstract
The occupational health impact of respiratory infectious diseases is costly to the economy and the health care system. Probiotics are non-pathogenic live microorganisms that, when ingested in adequate amounts, can colonize the intestinal tract, and enhance the immune system. In recent years, numerous studies have described the possible usefulness of certain probiotic strains in the treatment and prevention of respiratory tract infections, with disparate results. In order to assess the possible efficacy and safety of these microorganisms to prevent or ameliorate respiratory tract infections, we systematically searched the bibliographic databases MEDLINE (via Pubmed), EMBASE, The Cochrane library, Scopus, and Web of science, using the descriptors "Respiratory Tract Infections", "Probiotics", "Occupational Health", "Humans", and "Clinical Trials". After applying our inclusion and exclusion criteria, 18 studies were accepted for review and critical analysis. Our analysis suggests that a combination of different probiotics, most of them in the genus Bifidobacterium sp. and Lactobacillus sp., could be a good mix to strengthen the immune system and reduce the symptoms of URTIs in the healthy working population.
Collapse
Affiliation(s)
- José Antonio Picó-Monllor
- Department of Pharmacology, Pediatrics and Organic Chemistry, Faculty of Pharmacy, Universidad Miguel Hernández de Elche, 03202 Elche, Spain
| | - Beatriz Ruzafa-Costas
- MiBioPath Research Group, Health and Science Faculty, Catholic University of Murcia (UCAM), Campus de los Jerónimos n 135, 30107 Murcia, Spain; (B.R.-C.); (E.N.-D.); (P.S.-P.); (V.N.-L.)
| | - Eva Núñez-Delegido
- MiBioPath Research Group, Health and Science Faculty, Catholic University of Murcia (UCAM), Campus de los Jerónimos n 135, 30107 Murcia, Spain; (B.R.-C.); (E.N.-D.); (P.S.-P.); (V.N.-L.)
| | - Pedro Sánchez-Pellicer
- MiBioPath Research Group, Health and Science Faculty, Catholic University of Murcia (UCAM), Campus de los Jerónimos n 135, 30107 Murcia, Spain; (B.R.-C.); (E.N.-D.); (P.S.-P.); (V.N.-L.)
| | | | - Vicente Navarro-Lopez
- MiBioPath Research Group, Health and Science Faculty, Catholic University of Murcia (UCAM), Campus de los Jerónimos n 135, 30107 Murcia, Spain; (B.R.-C.); (E.N.-D.); (P.S.-P.); (V.N.-L.)
- Clinical Microbiology and Infectious Disease Unit, Hospital Universitario Vinalopó, 03293 Elche, Spain
| |
Collapse
|
13
|
Wang Q, Lin X, Xiang X, Liu W, Fang Y, Chen H, Tang F, Guo H, Chen D, Hu X, Wu Q, Zhu B, Xia J. Oropharyngeal Probiotic ENT-K12 Prevents Respiratory Tract Infections Among Frontline Medical Staff Fighting Against COVID-19: A Pilot Study. Front Bioeng Biotechnol 2021; 9:646184. [PMID: 34249878 PMCID: PMC8264449 DOI: 10.3389/fbioe.2021.646184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Healthcare workers at the frontline are facing a substantial risk of respiratory tract infection during the COVID-19 outbreak due to an extremely stressful work schedule and public health event. A well-established first-line defense on oropharyngeal microbiome could be a promising strategy to protect individuals from respiratory tract infections including COVID-19. The most thoroughly studied oropharyngeal probiotic product which creates a stable upper respiratory tract microbiota capable of preventing upper respiratory tract infections was chosen to evaluate the safety and efficacy on reducing episodes of upper respiratory tract infections for COVID-19 healthcare workers. To our knowledge to date, this is the very first study describing the beneficial effects of oropharyngeal probiotic been administered by healthcare workers during the COVID-19 pandemic. In this randomized controlled trial, we provided the probiotics to frontline medical staff who work in the hospitals in Wuhan and had been in close contact with hospitalized COVID-19 patients for prophylactic use on a daily basis. Our finding suggests that oropharyngeal probiotic administration significantly reduced the incidence of respiratory tract infections by 64.8%, reduced the time experiencing respiratory tract infections and oral ulcer symptoms by 78%, shortened the days absent from work by 95.5%, and reduced the time under medication where there is no record of antibiotic and anti-viral drug intake in the probiotic group. Furthermore, medical staff treated with Bactoblis experienced sustained protection from respiratory tract infections since the 10th day of oropharyngeal probiotic administration resulting in an extremely low incidence rate of respiratory tract infections.
Collapse
Affiliation(s)
- Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xuan Lin
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Wanxin Liu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Ying Fang
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Haiping Chen
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Fang Tang
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hongyan Guo
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Di Chen
- Huarun WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiafen Hu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Junbo Xia
- Department of Pulmonary Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Gurbanov R, Karadağ H, Karaçam S, Samgane G. Tapioca Starch Modulates Cellular Events in Oral Probiotic Streptococcus salivarius Strains. Probiotics Antimicrob Proteins 2021; 13:195-207. [PMID: 32601954 DOI: 10.1007/s12602-020-09678-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Considering the implications of microbiota in health, scientists are in search of microbiota-oriented strategies for the effective prevention and/or treatment of a wide variety of serious diseases. A microbiota comprises diverse microorganisms with either probiotic or pathogenic properties. The fermentation of prebiotic carbohydrates by probiotic bacteria can affect host metabolism. Therefore, understanding the prebiotic-mediated metabolic modulations in probiotics is crucial to develop functional foods for the improvement of disturbed microbiota. Studies have emphasized the importance of prebiotics in probiotic therapies for mucosal diseases and highlighted the need for extensive research on oral bacteria. In the present study, the cellular events have been studied in batch cultures of probiotic Streptococcus salivarius exposed to the natural prebiotic, tapioca starch (TS). TS modulated the keystone metabolic events in Streptococcus salivarius in a dose-dependent manner. Besides increasing the live cell counts and altering the colony morphologies, TS affected the protein metabolism in terms of cellular expression and conformational changes in protein secondary structures. After treatment with TS, the nucleic acid synthesis increased and B-DNA was more than A- and Z-DNA, together with the diminished fatty acids and increased polysaccharide synthesis. The study results can be considered for the assessment of functional foods and probiotics in oral health.
Collapse
Affiliation(s)
- Rafig Gurbanov
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | - Hazel Karadağ
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Sevinç Karaçam
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Gizem Samgane
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
15
|
Bennett J, Rentta N, Leung W, Anderson A, Oliver J, Wyber R, Harwod M, Webb R, Malcom J, Baker MG. Structured review of primary interventions to reduce group A streptococcal infections, acute rheumatic fever and rheumatic heart disease. J Paediatr Child Health 2021; 57:797-802. [PMID: 33876472 DOI: 10.1111/jpc.15514] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022]
Abstract
Rheumatic heart disease (RHD) is a large, preventable, global public health burden. In New Zealand (NZ), acute rheumatic fever (ARF) and RHD rates are highest for Māori and Pacific children. This structured review explores the evidence for primary prevention interventions to diagnose and effectively treat group A Streptococcus (GAS) pharyngitis and skin infections to reduce rates of ARF and RHD. Medline, EMBASE and Scopus databases were searched as well as other electronic publications. Included were 50 publications from 1980 onwards. This review has identified that there is little available evidence for effective primary prevention strategies to reduce ARF rates in NZ. However, two primary intervention strategies that should be considered by communities at high-risk of ARF are: the use of school-based clinics to identify and treat GAS pharyngitis and GAS skin infections; and intramuscular benzathine penicillin G with lignocaine analgesia in children who present with a GAS positive throat.
Collapse
Affiliation(s)
- Julie Bennett
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Nelly Rentta
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - William Leung
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Anneka Anderson
- Te Kupenga Hauora Māori, The University of Auckland, Auckland, New Zealand.,The National Hauora Coalition, Auckland, New Zealand
| | - Jane Oliver
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Rosemary Wyber
- Telethon Kids Institute, Perth, Western Australia, Australia
| | - Matire Harwod
- General Practice and Primary Health Care, University of Auckland, Auckland, New Zealand.,Papakura Marae Health Clinic, Auckland, New Zealand
| | - Rachel Webb
- Auckland District Health Board, Auckland, New Zealand.,Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - John Malcom
- General Paediatrics, Whakatane Hospital, Whakatane, New Zealand
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
16
|
Abstract
The human mouth harbors a complex microbiota, the composition of which is potentially influenced by a wide range of factors, including the intake of food and drink, the availability of endogenous nutrients, the host immune system, drug treatments, and systemic diseases. Despite these possible influences, the oral microbiota is remarkably resilient, particularly in comparison with the microbiota of the large intestine. Diet, with the exception of excessive and/or frequent consumption of fermentable carbohydrate or supplementation with nitrate, has minimal impact on the composition of the oral bacterial community. The common oral diseases dental caries and the periodontal diseases is associated with modification of the oral microbiota primarily as a result of the ecological changes induced by excessive acid production and inflammation, respectively. Systemically-administered antimicrobials have only a small effect on the composition of the oral bacterial community, and while locally delivered antimicrobials can have some clinical benefits, the biofilm lifestyle of oral bacteria lends them substantial resistance to the agents used. Saliva plays an important role in oral microbial ecology, by supplying nutrients and providing protection against colonization by nonoral organisms. Dry mouth is one condition that has a major effect on the microbiota, resulting in increased colonization by opportunistic pathogens. Some systemic diseases do affect the oral microbiome, notably diabetes, in which raised levels of glucose in saliva and tissue impact on bacterial nutrition.
Collapse
Affiliation(s)
- William G Wade
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Department of Microbiology, Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
17
|
Meskina ER, Stashko TV. [How to reduce the antibacterial load in the treatment of acute tonsillitis and pharyngitis? Possible tactics and practical approaches]. Vestn Otorinolaringol 2021; 85:90-99. [PMID: 33474925 DOI: 10.17116/otorino20208506190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acute tonsillopharyngitis is one of the most frequent reasons for visiting a doctor and prescribing inappropriate antibiotic therapy (ABT). There are several reasons for this - from the difficulties of etiological diagnosis and the development of relapses and possible severe complications to the personal attitude of doctors and patients to the choice of treatment. At the same time, the issue of antibiotic resistance and other aspects associated with the prescription of ABT is one of the most important problems of modern healthcare worldwide. The purpose of this review is to demonstrate the best practical approaches to the choice of treatment tactics for acute tonsillitis (AT) in the treatment of children and adults, with an emphasis on reducing the load of ABT. The review examines the indications and disadvantages of clinical and laboratory diagnosis of AT. There are no highly sensitive clinical and laboratory instruments that differentiate viral and bacterial AT. Exudativeis AT in children is not an underlying symptom of streptococcal etiology. Despite the limitations, the modified Centor/McIsaac score ≥3 (taking into account age and the presence of respiratory symptoms) should be used as an indication for ABT in conjunction with a rapid streptotest and subsequent bacteriological culture for S. pyogenes if the screening test is negative. Additional examinations (determination of leukocytosis, CRP and procalcitonin test) are not required for most patients. ABT should not be given to low-risk patients for the treatment and prevention of rheumatic fever and acute glomerulonephritis. Prevention of purulent complications (paratonsillitis and retropharyngeal abscess, acute otitis media, cervical lymphadenitis, mastoiditis, or acute sinusitis) is not a specific indication for ABT in AT and is not required in most patients. The strategy of «delayed antibiotic prescriptions» with monitoring the patient's condition for 2-3 days is appropriate and highly effective in doubtful cases. The drugs of choice for treatment of AT are amoxicillin and oral forms of I and II generation cephalosporins. Macrolides are not indicated as first-line treatment for AT. The course of ABT for streptococcal AT is 10 days, which reduces the risk of recurrent episode. Topical drugs can be the only means of etiopathogenetic treatment with viral AT, or additional for bacterial AT. Their use not only relieves sore throat, but also shortens the duration of the disease, and also improves the patients prognosis. Benzalkonium chloride + tyrothricin + benzocaine (Dorithyrcin) may be a rational drug of choice for topical therapy due to the available clinical evidence. There is a significant reserve for reducing the load of ABT during AT. Further clinical trials are needed to assess the efficacy of short courses of ABT in the treatment of AT in high-income countries and provide a basis for strong recommendations for topical drug use. This can reduce the frequency of ABT prescribing and increase the level of interaction between specialists and patients.
Collapse
Affiliation(s)
- E R Meskina
- Moscow Regional Research and Clinical Institute (MONIKI), Moskow, Russia
| | - T V Stashko
- Moscow Regional Research and Clinical Institute (MONIKI), Moskow, Russia
| |
Collapse
|
18
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
19
|
Anjum J, Nazir S, Tariq M, Barrett K, Zaidi A. Lactobacillus commensals autochthonous to human milk have the hallmarks of potent probiotics. MICROBIOLOGY-SGM 2020; 166:966-980. [PMID: 32886600 DOI: 10.1099/mic.0.000966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Maternal milk is an important source of essential nutrients for the optimal growth of infants. Breastfeeding provides a continuous supply of beneficial bacteria to colonize the infant gastrointestinal tract (GIT) and offers health benefits for disease prevention and immunity. The purpose of this study was to isolate novel probiotic strains from the breast milk of native Pakistani mothers and to evaluate their probiotic potential. We isolated 21 strains of bacteria from the colostrum and mature milk of 20 healthy mothers, who had vaginal deliveries and were not taking antibiotics. After phenotypic and genotypic characterization, these isolates were tested for survival in the GIT using in vitro acid and bile tests. Nine strains showing good acid tolerance were assessed for their growth rate, bile resistance and ability to hydrolyze bile salts. Out of the four Lactobacillus isolates adjudged to be most promising as probiotics, three were Lactobacillus fermentum strains and one was a strain of Lactobacillus oris. This study demonstrates that human milk is a viable source of commensal bacteria beneficial to both adults and babies.
Collapse
Affiliation(s)
- Jasia Anjum
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan.,National Probiotic Lab, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Shahid Nazir
- Dept of Pediatrics, Shifa International Hospitals Ltd, Islamabad, Pakistan
| | - Muhammad Tariq
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan.,National Probiotic Lab, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Kim Barrett
- Department of Medicine, University of California San Diego, CA 92093-0063, USA
| | - Arsalan Zaidi
- National Probiotic Lab, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan
| |
Collapse
|
20
|
Xu C, Yue R, Lv X, Wu T, Yang M, Chen Y. The efficacy and safety of Banxia-Houpo-Tang for chronic pharyngitis: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e19922. [PMID: 32791655 PMCID: PMC7387004 DOI: 10.1097/md.0000000000019922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Chronic pharyngitis is a common disease with a dry throat, sore throat, pharyngeal itching, dry cough, and difficulty in swallowing, bringing inconvenience to patients' daily life. Banxia-Houpo-Tang (BHT) has proven to be effective in the treatment of chronic pharyngitis, yet its real extent is not well understood. To prove this point, we will perform a protocol for a systematic review and meta-analysis of BHT for chronic pharyngitis. METHODS/DESIGN We will search for electronic databases both English and Chinese from inception to December 2019. Two experienced researchers select the qualified articles from: The Cochrane Library, EBM Reviews, OVID, Web of Science, PubMed, Chinese National Knowledge Infrastructure (CNKI), China Academic Journal Network Publishing Database (CAJD), China Biomedical Literature database (CBM), VIP Database for Chinese Technical Periodicals (VIP). Journal Integration Platform and WAN FANG Database. We select the appropriate searching language. The primary outcome was remission rate, and the secondary outcomes include clinical symptoms, clinical examination, adverse event. Data extraction and quality assessment will be conducted by 2 experienced researchers independently. Data analysis and the risk of bias assessment will be determined by RevMan 5.3 software. RESULTS Based on the current proofs, we will get the exact evidence about the safety and effectiveness of BHT in the treatment of chronic pharyngitis. CONCLUSION Our study is the first meta-analysis to evaluate the efficacy and safety of BHT in the treatment of chronic pharyngitis, and it will provide evidence for alternative treatment for the management of chronic pharyngitis. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/QNF6X.
Collapse
Affiliation(s)
- Chenyi Xu
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Xuelian Lv
- Hospital of Traditional Chinese Medicine of Xinjin, Chengdu, P.R. China
| | - Tingchao Wu
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine
| | - Yuan Chen
- Hospital of Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
21
|
Abstract
In this work, we studied the biotechnological potential of thirteen probiotic microorganisms currently used to improve human health. We discovered that the majority of the investigated bacteria are able to catalyze the hydration reaction of the unsaturated fatty acids (UFAs). We evaluated their biocatalytic activity toward the three most common vegetable UFAs, namely oleic, linoleic, and linolenic acids. The whole-cell biotransformation experiments were performed using a fatty acid concentration of 3 g/L in anaerobic conditions. Through these means, we assessed that the main part of the investigated strains catalyzed the hydration reaction of UFAs with very high regio- and stereoselectivity. Our biotransformation reactions afforded almost exclusively 10-hydroxy fatty acid derivatives with the single exception of Lactobacillus acidophilus ATCC SD5212, which converted linoleic acid in a mixture of 13-hydroxy and 10-hydroxy derivatives. Oleic, linoleic, and linolenic acids were transformed into (R)-10-hydroxystearic acid, (S)-(12Z)-10-hydroxy-octadecenoic, and (S)-(12Z,15Z)-10-hydroxy-octadecadienoic acids, respectively, usually with very high enantiomeric purity (ee > 95%). It is worth noting that the biocatalytic capabilities of the thirteen investigated strains may change considerably from each other, both in terms of activity, stereoselectivity, and transformation yields. Lactobacillus rhamnosus ATCC 53103 and Lactobacillus plantarum 299 V proved to be the most versatile, being able to efficiently and selectively hydrate all three investigated fatty acids.
Collapse
|
22
|
Lin TL, Shu CC, Lai WF, Tzeng CM, Lai HC, Lu CC. Investiture of next generation probiotics on amelioration of diseases – Strains do matter. MEDICINE IN MICROECOLOGY 2019. [DOI: 10.1016/j.medmic.2019.100002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|