1
|
Delattre R, Seurat J, Haddad F, Nguyen TT, Gaborieau B, Kane R, Dufour N, Ricard JD, Guedj J, Debarbieux L. Combination of in vivo phage therapy data with in silico model highlights key parameters for pneumonia treatment efficacy. Cell Rep 2022; 39:110825. [PMID: 35584666 DOI: 10.1016/j.celrep.2022.110825] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/19/2021] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
The clinical (re)development of bacteriophage (phage) therapy to treat antibiotic-resistant infections faces the challenge of understanding the dynamics of phage-bacteria interactions in the in vivo context. Here, we develop a general strategy coupling in vitro and in vivo experiments with a mathematical model to characterize the interplay between phage and bacteria during pneumonia induced by a pathogenic strain of Escherichia coli. The model allows the estimation of several key parameters for phage therapeutic efficacy. In particular, it quantifies the impact of dose and route of phage administration as well as the synergism of phage and the innate immune response on bacterial clearance. Simulations predict a limited impact of the intrinsic phage characteristics in agreement with the current semi-empirical choices of phages for compassionate treatments. Model-based approaches will foster the deployment of future phage-therapy clinical trials.
Collapse
Affiliation(s)
- Raphaëlle Delattre
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris 75015, France; Université Paris Cité, INSERM U1137, IAME, Paris 75006, France
| | - Jérémy Seurat
- Université Paris Cité, INSERM U1137, IAME, Paris 75006, France
| | - Feyrouz Haddad
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris 75015, France; Université Paris Cité, INSERM U1137, IAME, Paris 75006, France
| | - Thu-Thuy Nguyen
- Université Paris Cité, INSERM U1137, IAME, Paris 75006, France
| | - Baptiste Gaborieau
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris 75015, France; Université Paris Cité, INSERM U1137, IAME, Paris 75006, France; APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Rokhaya Kane
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris 75015, France
| | - Nicolas Dufour
- Centre Hospitalier René Dubos, Médecine Intensive Réanimation, Cergy Pontoise 95503, France
| | - Jean-Damien Ricard
- Université Paris Cité, INSERM U1137, IAME, Paris 75006, France; APHP, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Colombes, France
| | - Jérémie Guedj
- Université Paris Cité, INSERM U1137, IAME, Paris 75006, France.
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris 75015, France.
| |
Collapse
|
3
|
Lingas G, Rosenke K, Safronetz D, Guedj J. Lassa viral dynamics in non-human primates treated with favipiravir or ribavirin. PLoS Comput Biol 2021; 17:e1008535. [PMID: 33411731 PMCID: PMC7817048 DOI: 10.1371/journal.pcbi.1008535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 01/20/2021] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Lassa fever is an haemorrhagic fever caused by Lassa virus (LASV). There is no vaccine approved against LASV and the only recommended antiviral treatment relies on ribavirin, despite limited evidence of efficacy. Recently, the nucleotide analogue favipiravir showed a high antiviral efficacy, with 100% survival obtained in an otherwise fully lethal non-human primate (NHP) model of Lassa fever. However the mechanism of action of the drug is not known and the absence of pharmacokinetic data limits the translation of these results to the human setting. Here we aimed to better understand the antiviral effect of favipiravir by developping the first mathematical model recapitulating Lassa viral dynamics and treatment. We analyzed the viral dynamics in 24 NHPs left untreated or treated with ribavirin or favipiravir, and we put the results in perspective with those obtained with the same drugs in the context of Ebola infection. Our model estimates favipiravir EC50 in vivo to 2.89 μg.mL-1, which is much lower than what was found against Ebola virus. The main mechanism of action of favipiravir was to decrease virus infectivity, with an efficacy of 91% at the highest dose. Based on our knowledge acquired on the drug pharmacokinetics in humans, our model predicts that favipiravir doses larger than 1200 mg twice a day should have the capability to strongly reduce the production infectious virus and provide a milestone towards a future use in humans.
Collapse
Affiliation(s)
| | - Kyle Rosenke
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - David Safronetz
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
4
|
Gonçalves A, Bertrand J, Ke R, Comets E, de Lamballerie X, Malvy D, Pizzorno A, Terrier O, Rosa Calatrava M, Mentré F, Smith P, Perelson AS, Guedj J. Timing of Antiviral Treatment Initiation is Critical to Reduce SARS-CoV-2 Viral Load. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:509-514. [PMID: 32558354 PMCID: PMC7323384 DOI: 10.1002/psp4.12543] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
We modeled the viral dynamics of 13 untreated patients infected with severe acute respiratory syndrome‐coronavirus 2 to infer viral growth parameters and predict the effects of antiviral treatments. In order to reduce peak viral load by more than two logs, drug efficacy needs to be > 90% if treatment is administered after symptom onset; an efficacy of 60% could be sufficient if treatment is initiated before symptom onset. Given their pharmacokinetic/pharmacodynamic properties, current investigated drugs may be in a range of 6–87% efficacy. They may help control virus if administered very early, but may not have a major effect in severely ill patients.
Collapse
Affiliation(s)
| | | | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Xavier de Lamballerie
- Institut Hospitalo-Universitaire Méditerranée Infection, UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille University - IRD 190 - Inserm 1207 - EHESP), Marseille, France
| | - Denis Malvy
- Inserm, UMR 1219, Université de Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Manuel Rosa Calatrava
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | | | - Patrick Smith
- Certara, Integrated Drug Development, Princeton, New Jersey, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | |
Collapse
|
5
|
Gonçalves A, Bertrand J, Ke R, Comets E, de Lamballerie X, Malvy D, Pizzorno A, Terrier O, Calatrava MR, Mentré F, Smith P, Perelson AS, Guedj J. Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32511641 DOI: 10.1101/2020.04.04.20047886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We modeled the viral dynamics of 13 untreated patients infected with SARS-CoV-2 to infer viral growth parameters and predict the effects of antiviral treatments. In order to reduce peak viral load by more than 2 logs, drug efficacy needs to be greater than 80% if treatment is administered after symptom onset; an efficacy of 50% could be sufficient if treatment is initiated before symptom onset. Given their pharmacokinetic/pharmacodynamic properties, current investigated drugs may be in a range of 20-70% efficacy. They may help control virus if administered very early, but may not have a major effect in severe patients.
Collapse
|