1
|
Chong CSC, Lau YY, Michels PAM, Lim CSY. Insights into biofilm-mediated mechanisms driving last-resort antibiotic resistance in clinical ESKAPE pathogens. Crit Rev Microbiol 2025:1-26. [PMID: 40098357 DOI: 10.1080/1040841x.2025.2473332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
The rise of antibiotic-resistant bacteria poses a grave threat to global health, with the ESKAPE pathogens, which comprise Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. being among the most notorious. The World Health Organization has reserved a group of last-resort antibiotics for treating multidrug-resistant bacterial infections, including those caused by ESKAPE pathogens. This situation calls for a comprehensive understanding of the resistance mechanisms as it threatens public health and hinder progress toward the Sustainable Development Goal (SDG) 3: Good Health and Well-being. The present article reviews resistance mechanisms, focusing on emerging resistance mutations in multidrug-resistant ESKAPE pathogens, particularly against last-resort antibiotics, and describes the role of biofilm formation in multidrug-resistant ESKAPE pathogens. It discusses the latest therapeutic advances, including the use of antimicrobial peptides and CRISPR-Cas systems, and the modulation of quorum sensing and iron homeostasis, which offer promising strategies for countering resistance. The integration of CRISPR-based tools and biofilm-targeted approaches provides a potential framework for managing ESKAPE infections. By highlighting the spread of current resistance mutations and biofilm-targeted approaches, the review aims to contribute significantly to advancing our understanding and strategies in combatting this pressing global health challenge.
Collapse
Affiliation(s)
- Christina Shook Cheng Chong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan UCSI, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| | - Yin Yin Lau
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan UCSI, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| | - Paul A M Michels
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh 3FL, UK
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan UCSI, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Zhou P, Gao H, Li M, Wu C, Han W, Wan C, Shen L, Yuan X, Shi J, Huang Y, Lv J, Zhou Y, Yu F. Characterization of a novel KPC-2 variant, KPC-228, conferring resistance to ceftazidime-avibactam in an ST11-KL64 hypervirulent Klebsiella pneumoniae. Int J Antimicrob Agents 2025; 65:107411. [PMID: 39709132 DOI: 10.1016/j.ijantimicag.2024.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND With the widespread clinical use of ceftazidime-avibactam (CZA), reports of resistance have increased continuously, posing immense threats to public health worldwide. In this study, we explored the underlying mechanisms leading to the development of CZA resistance in an ST11-KL64 hypervirulent Klebsiella pneumoniae CRE146 that harbored the blaKPC-228 gene. METHODS Twelve carbapenem-resistant Klebsiella pneumoniae (CRKP) strains were isolated from the same patient, including K. pneumoniae CRE146. Whole-genome sequencing (WGS), phylogenetic analysis, blaKPC gene cloning and pACYC-KPC construction assays were conducted to further explore the molecular mechanisms of CZA resistance. Quantitative siderophore production assay, string test, capsule quantification and Galleria mellonella in vivo infection model were applied to verify the level of pathogenicity of K. pneumoniae CRE146. RESULTS This strain carried key virulence factors, iutA-iucABCD operon and rmpA gene. Compared to the wild-type KPC-2 carbapenemase, the novel KPC-228 enzyme exhibited a deletion of four amino acids in the Ω-loop (del_167-170_ELNS). In addition, the emergence of CZA resistance appeared to be associated with drug exposure, and we observed the in vivo evolution of wild-type KPC-2 to KPC-228 and then the reversion to its original wild-type KPC-2. The blaKPC-228 gene was located within the double IS26 flanking the ISKpn6-blaKPC-228-ISKpn27 core structure and carried on an IncFII/IncR-type plasmid. Notably, CRE146 exhibited high-level resistance to CZA (64/4 mg/L) but increased susceptibility to meropenem (1 mg/L) and imipenem (0.5 mg/L) respectively. PACYC-KPC plasmids were constructed and expressed in K. pneumoniae ATCC13883. Compared to K. pneumoniae ATCC13883 harboring blaKPC-2, K. pneumoniae ATCC13883 harboring blaKPC-228 exhibited a high-level resistance to CZA (32/4 mg/L) and increased susceptibility to meropenem (1 mg/L) and imipenem (0.5 mg/L). Interestingly, K. pneumoniae ATCC13883 harboring blaKPC-228 showed a significant decrease in their resistance to all β-lactamases tested except CZA and ceftazidime. CONCLUSIONS In conclusion, we reported a novel KPC variant, KPC-228, in a clinical ST11-KL64 hypervirulent K. pneumoniae strain, which conferred CZA resistance, possibly through enhancing ceftazidime affinity and reducing avibactam binding. The blaKPC-228 can mutate back to blaKPC-2 under carbapenem pressure, which was very detrimental to clinical treatment. This strain carried both resistance and virulence genes, posing a major challenge in clinical management.
Collapse
Affiliation(s)
- Peiyao Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Haojin Gao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Meilan Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunyang Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weihua Han
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Cailing Wan
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Li Shen
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xinru Yuan
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Junhong Shi
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yu Huang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jianbo Lv
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Parwana D, Gu J, Chen S, Bethel CR, Marshall E, Hujer AM, Bonomo RA, Haider S. The Structural Role of N170 in Substrate-Assisted Deacylation in KPC-2 β-Lactamase. Angew Chem Int Ed Engl 2024; 63:e202317315. [PMID: 38227422 DOI: 10.1002/anie.202317315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
The amino acid substitutions in Klebsiella pneumoniae carbapenemase 2 (KPC-2) that have arisen in the clinic are observed to lead to the development of resistance to ceftazidime-avibactam, a preferred treatment for KPC bearing Gram-negative bacteria. Specific substitutions in the omega loop (R164-D179) result in changes in the structure and function of the enzyme, leading to alterations in substrate specificity, decreased stability, and more recently observed, increased resistance to ceftazidime/avibactam. Using accelerated rare-event sampling well-tempered metadynamics simulations, we explored in detail the structural role of R164 and D179 variants that are described to confer ceftazidime/avibactam resistance. The buried conformation of D179 substitutions produce a pronounced structural disorder in the omega loop - more than R164 mutants, where the crystallographic omega loop structure remains mostly intact. Our findings also reveal that the conformation of N170 plays an underappreciated role impacting drug binding and restricting deacylation. The results further support the hypothesis that KPC-2 D179 variants employ substrate-assisted catalysis for ceftazidime hydrolysis, involving the ring amine of the aminothiazole group to promote deacylation and catalytic turnover. Moreover, the shift in the WT conformation of N170 contributes to reduced deacylation and an altered spectrum of enzymatic activity.
Collapse
Affiliation(s)
| | - Jing Gu
- UCL School of Pharmacy, London, UK
| | | | - Christopher R Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Emma Marshall
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Andrea M Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Shozeb Haider
- UCL School of Pharmacy, London, UK
- UCL Centre for Advanced Research Computing, London, UK
| |
Collapse
|
4
|
Bongiorno D, Bivona DA, Cicino C, Trecarichi EM, Russo A, Marascio N, Mezzatesta ML, Musso N, Privitera GF, Quirino A, Scarlata GGM, Matera G, Torti C, Stefani S. Omic insights into various ceftazidime-avibactam-resistant Klebsiella pneumoniae isolates from two southern Italian regions. Front Cell Infect Microbiol 2023; 12:1010979. [PMID: 36683697 PMCID: PMC9851273 DOI: 10.3389/fcimb.2022.1010979] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/12/2022] [Indexed: 01/06/2023] Open
Abstract
Ceftazidime-avibactam (CZA) is one of the best therapeutic options available for infections caused by Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria. However, sporadic reports of CZA-resistant strains have been rapidly increasing in patients. Herein, we provide detailed case reports of the emergence of ceftazidime-avibactam resistance to identify their resistome and virulome using genomic molecular approaches. Sixteen isolates were collected from 13 patients at three hospitals in Catania and Catanzaro (Italy) between 2020-2021. Antimicrobial susceptibility was determined by broth microdiluition. The samples included in study were analyzed for resistome, virulome and Sequence Type (ST) using Whole Genome Sequencing (WGS). All strains were resistant to ceftazidime/avibactam, ciprofloxacin, extended-spectrum cephalosporins and aztreonam, 13/16 to meropenem, 8/16 to colistin and 7/16 to fosfomycin; 15/16 were susceptible to meropenem/vaborbactam; all strains were susceptible to cefiderocol. Molecular analysis showed circulation of three major clones: ST101, ST307 and ST512. In 10/16 strains, we found a bla KPC-3 gene; in 6/16 strains, four different bla KPC variants (bla KPC28-31-34-50) were detected. A plethora of other beta-lactam genes (bla SHV28-45-55-100-106-187-205-212, bla OXA1-9-48, bla TEM-181 and bla CTX-M-15) was observed; bla OXA-9 was found in ST307 and ST512, instead bla OXA48 in one out four ST101 strains. With regard to membrane permeability, ompK35 and ompK36 harbored frameshift mutations in 15/16 strains; analysis of ompK37 gene revealed that all strains harbored a non-functional protein and carry wild-type PBP3. There is an urgent need to characterize the mechanisms underlying carbapenem resistance and the intrinsic bacterial factors that facilitate the rapid emergence of resistance. Furthermore, it is becoming increasingly important to explore feasible methods for accurate detection of different KPC enzymes.
Collapse
Affiliation(s)
- Dafne Bongiorno
- Microbiology Section, Dept of Biomedical and Biotechnological Science, University of Catania, Catania, Italy,*Correspondence: Dafne Bongiorno,
| | - Dalida A. Bivona
- Microbiology Section, Dept of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Claudia Cicino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Enrico M. Trecarichi
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Alessandro Russo
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Maria Lina Mezzatesta
- Microbiology Section, Dept of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Nicolò Musso
- Microbiology Section, Dept of Biomedical and Biotechnological Science, University of Catania, Catania, Italy,Unità Operativa Complessa (UOC) Laboratory Analysis, University Hospital Policlinico-San Marco, Catania, Italy
| | - Grete F. Privitera
- Microbiology Section, Dept of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Giuseppe G. M. Scarlata
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Carlo Torti
- Unit of Infectious and Tropical Diseases, Department of Medical and Surgical Sciences, “Magna Graecia” University, Catanzaro, Italy
| | - Stefania Stefani
- Microbiology Section, Dept of Biomedical and Biotechnological Science, University of Catania, Catania, Italy,Unità Operativa Complessa (UOC) Laboratory Analysis, University Hospital Policlinico-San Marco, Catania, Italy
| |
Collapse
|
5
|
Nicola F, Cejas D, González-Espinosa F, Relloso S, Herrera F, Bonvehí P, Smayevsky J, Figueroa-Espinosa R, Gutkind G, Radice M. Outbreak of Klebsiella pneumoniae ST11 Resistant To Ceftazidime-Avibactam Producing KPC-31 and the Novel Variant KPC-115 during COVID-19 Pandemic in Argentina. Microbiol Spectr 2022; 10:e0373322. [PMID: 36445147 PMCID: PMC9769968 DOI: 10.1128/spectrum.03733-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
We describe an outbreak of Klebsiella pneumoniae sequence type 11 (ST11) producing KPC variants resistant to ceftazidime-avibactam. Six patients hospitalized in the intensive care unit (mostly due to critical COVID pneumonia) presented infection or colonization by this bacterium. They had several comorbidities and required mechanical ventilation, central venous catheters, and urinary catheters. All 6 patients had a history of fecal colonization with KPC-producing Enterobacterales (KPC-E). Three of them had previous episodes of infection with ceftazidime-avibactam-susceptible KPC-producing K. pneumoniae, which were treated with ceftazidime-avibactam. Several phenotypic methods failed to detect carbapenemase production in these 6 ceftazidime-avibactam-resistant isolates, and they showed in vitro susceptibility to imipenem and meropenem. All of them rendered positive results for blaKPC by PCR, and amplicon sequencing identified blaKPC-31 variant in 5 isolates and a novel variant, named blaKPC-115, in the other. Moreover, matrix-assisted laser desorption ionization-time of flight mass spectrometry was able to detect KPC in all isolates. Ceftazidime-avibactam-resistant isolates, as well as those recovered from previous infection episodes (KPC-3-producing K. pneumoniae, ceftazidime-avibactam susceptible), displayed a unique pulse type and belonged to ST11. Based on whole-genome sequencing results of selected isolates, less than 7 single-nucleotide polymorphisms were identified among them, which was indicative of the presence of a unique clone. Both in vivo selection and horizontal transmission seemed to have occurred in our hospital. Detection of these strains is challenging for the laboratory. History of previous KPC-E infections or colonization and systematic testing for resistance to ceftazidime-avibactam might help raise awareness of this possibility. IMPORTANCE Klebsiella pneumoniae is one of the main bacteria that cause infections in health care settings. This pathogen has developed a high level of resistance to many antibiotics. Some K. pneumoniae isolates can produce an enzyme known as carbapenemase KPC, making carbapenems (considered the last line for therapy) not effective to treat their infections. The combination ceftazidime-avibactam, approved by FDA in 2015, is useful to treat infections caused by KPC-producing K. pneumoniae. This study describes the emergence, in one hospital in Argentina, of K. pneumoniae isolates that produce KPC variants (KPC-31 and KPC-115) resistant to ceftazidime-avibactam. The ceftazidime-avibactam-resistant bacteria were isolated in inpatients, including some that previously received this combination as treatment. Transmission of this strain to other patients also occurred in the studied period. Detection of these bacteria is challenging for the laboratory. The knowledge and awareness of the emergence of this pathogen in our region are highly valuable.
Collapse
Affiliation(s)
- Federico Nicola
- Laboratorio de Bacteriología, Micología y Parasitología, Departamento de Análisis Clínicos, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Daniela Cejas
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Francisco González-Espinosa
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Silvia Relloso
- Laboratorio de Bacteriología, Micología y Parasitología, Departamento de Análisis Clínicos, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Fabián Herrera
- Sección Infectología, Departamento de Medicina Interna, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Pablo Bonvehí
- Sección Infectología, Departamento de Medicina Interna, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Jorgelina Smayevsky
- Laboratorio de Bacteriología, Micología y Parasitología, Departamento de Análisis Clínicos, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Roque Figueroa-Espinosa
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel Gutkind
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcela Radice
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Xiong L, Wang X, Wang Y, Yu W, Zhou Y, Chi X, Xiao T, Xiao Y. Molecular mechanisms underlying bacterial resistance to ceftazidime/avibactam. WIREs Mech Dis 2022; 14:e1571. [PMID: 35891616 PMCID: PMC9788277 DOI: 10.1002/wsbm.1571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/30/2022]
Abstract
Ceftazidime/avibactam (CAZ/AVI), a combination of ceftazidime and a novel β-lactamase inhibitor (avibactam) that has been approved by the U.S. Food and Drug Administration, the European Union, and the National Regulatory Administration in China. CAZ/AVI is used mainly to treat complicated urinary tract infections and complicated intra-abdominal infections in adults, as well as to treat patients infected with Carbapenem-resistant Enterobacteriaceae (CRE) susceptible to CAZ/AVI. However, increased clinical application of CAZ/AVI has resulted in the development of resistant strains. Mechanisms of resistance in most of these strains have been attributed to blaKPC mutations, which lead to amino acid substitutions in β-lactamase and changes in gene expression. Resistance to CAZ/AVI is also associated with reduced expression and loss of outer membrane proteins or overexpression of efflux pumps. In this review, the prevalence of CAZ/AVI-resistance bacteria, resistance mechanisms, and selection of detection methods of CAZ/AVI are demonstrated, aiming to provide scientific evidence for the clinical prevention and treatment of CAZ/AVI resistant strains, and provide guidance for the development of new drugs. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Luying Xiong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Xueting Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yuan Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Wei Yu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yanzi Zhou
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Xiaohui Chi
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Tingting Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yonghong Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina,Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| |
Collapse
|
7
|
Ceftazidime/Avibactam-Resistant Klebsiella pneumoniae subsp. pneumoniae Isolates in a Tertiary Italian Hospital: Identification of a New Mutation of the Carbapenemase Type 3 (KPC-3) Gene Conferring Ceftazidime/Avibactam Resistance. Microorganisms 2021; 9:microorganisms9112356. [PMID: 34835481 PMCID: PMC8624296 DOI: 10.3390/microorganisms9112356] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022] Open
Abstract
Several Klebsiella pneumoniae carpabenemase (KPC) gene mutations are associated with ceftazidime/avibactam (CAZ-AVI) resistance. Here, we describe four Klebsiella pneumoniae subsp. pneumoniae CAZ-AVI-resistant clinical isolates, collected at the University Hospital of Tor Vergata, Rome, Italy, from July 2019 to February 2020. These resistant strains were characterized as KPC-3, having the transition from cytosine to thymine (CAC-TAC) at nucleotide position 814, with histidine that replaces tyrosine (H272Y). In addition, two different types of KPC gene mutations were detected. The first one, common to three strains, was the D179Y (G532T), associated with CAZ-AVI resistance. The second mutation, found only in one strain, is a new mutation of the KPC-3 gene: a transversion from thymine to adenine (CTG-CAG) at nucleotide position 553. This mutation causes a KPC variant in which glutamine replaces leucine (Q168L). None of the isolates were detected by a rapid immunochromatographic assay for detection of carbapenemase (NG Biotech, Guipry, France) and were unable to grow on a selective chromogenic medium Carba SMART (bioMerieux, Firenze, Italy). Thus, they escaped common tests used for the prompt detection of Klebsiella pneumoniae KPC-producing.
Collapse
|
8
|
Han X, Shi Q, Mao Y, Quan J, Zhang P, Lan P, Jiang Y, Zhao D, Wu X, Hua X, Yu Y. Emergence of Ceftazidime/Avibactam and Tigecycline Resistance in Carbapenem-Resistant Klebsiella pneumoniae Due to In-Host Microevolution. Front Cell Infect Microbiol 2021; 11:757470. [PMID: 34760723 PMCID: PMC8573091 DOI: 10.3389/fcimb.2021.757470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae can cause both hospital- and community-acquired clinical infections. Last-line antibiotics against carbapenem-resistant K. pneumoniae (CRKP), such as ceftazidime/avibactam (CZA) and tigecycline (TGC), remain limited as treatment choices. This study aimed to investigate the mechanisms by which CRKP acquires CZA and TGC resistance in vivo under β-lactam antibiotic and TGC exposure. Three CRKP strains (XDX16, XDX31 and XDX51) were consecutively isolated from an inpatient with a urinary tract infection in two months. PFGE and MLST showed that these strains were closely related and belonged to sequence type (ST) 4496, which is a novel ST closely related to ST11. Compared to XDX16 and XDX31, XDX51 developed CZA and TGC resistance. Sequencing showed that double copies of blaKPC-2 were located on a 108 kb IncFII plasmid, increasing blaKPC-2 expression in XDX51. In addition, ramR was interrupted by Insertion sequence (IS) Kpn14 in XDX51, with this strain exhibiting upregulation of ramA, acrA and acrB expression compared with XDX16 and XDX31. Furthermore, LPS analysis suggested that the O-antigen in XDX51 was defective due to ISKpn26 insertion in the rhamnosyl transferase gene wbbL, which slightly reduced TGC susceptibility. In brief, CZA resistance was caused mainly by blaKPC-2 duplication, and TGC resistance was caused by ramR inactivation with additional LPS changes due to IS element insertion in wbbL. Notably, CRKP developed TGC and CZA resistance within one month under TGC and β-lactam treatment without exposure to CZA. The CRKP clone ST4496 has the ability to evolve CZA and TGC resistance rapidly, posing a potential threat to inpatients during antibiotic treatment.
Collapse
Affiliation(s)
- Xinhong Han
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiucheng Shi
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yihan Mao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Lan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Zhao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqing Wu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Cavallini S, Unali I, Bertoncelli A, Cecchetto R, Mazzariol A. Ceftazidime/avibactam resistance is associated with different mechanisms in KPC-producing Klebsiella pneumoniae strains. Acta Microbiol Immunol Hung 2021:2021.01626. [PMID: 34747363 DOI: 10.1556/030.2021.01626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 01/13/2023]
Abstract
This study focused on Klebsiella pneumoniae isolates that were resistant or had low susceptibility to a combination of ceftazidime/avibactam. We aimed to investigate the mechanisms underlying this resistance. A total of 24 multi-drug resistant isolates of K. pneumoniae were included in the study. The phenotypic determination of carbapenemase presence was based on the CARBA NP test. NG-Test CARBA 5 was also performed, and it showed KPC production in 22 out 24 strains. The molecular characterisation of blaKPC carbapenemase gene, ESBL genes (blaCTX-M, blaTEM, and blaSHV) and porin genes ompK35/36 was performed using the PCR. Finally, ILLUMINA sequencing was performed to determine the presence of genetic mutations.Various types of mutations in the KPC sequence, leading to ceftazidime/avibactam resistance, were detected in the analysed resistant strains. We observed that KPC-31 harboured the D179Y mutation, the deletion of the amino acids 167-168, and the mutation of T243M associated with ceftazidime/avibactam resistance. The isolates that did not present carbapenemase alterations were found to have other mechanisms such as mutations in the porins. The mutations both on the KPC-3 enzyme and in the porins confirmed, that diverse mechanisms confer resistance to ceftazidime/avibactam in K. pneumoniae.
Collapse
Affiliation(s)
- Sara Cavallini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ilaria Unali
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Bertoncelli
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Riccardo Cecchetto
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Zhang J, Li G, Zhang G, Kang W, Duan S, Wang T, Li J, Huangfu Z, Yang Q, Xu Y, Jia W, Sun H. Performance Evaluation of the Gradient Diffusion Strip Method and Disk Diffusion Method for Ceftazidime-Avibactam Against Enterobacterales and Pseudomonas aeruginosa: A Dual-Center Study. Front Microbiol 2021; 12:710526. [PMID: 34603236 PMCID: PMC8481768 DOI: 10.3389/fmicb.2021.710526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives: Ceftazidime–avibactam is a novel synthetic beta-lactam + beta-lactamase inhibitor combination. We evaluated the performance of the gradient diffusion strip method and the disk diffusion method for the determination of ceftazidime–avibactam against Enterobacterales and Pseudomonas aeruginosa. Methods: Antimicrobial susceptibility testing of 302 clinical Enterobacterales and Pseudomonas aeruginosa isolates from two centers were conducted by broth microdilution (BMD), gradient diffusion strip method, and disk diffusion method for ceftazidime–avibactam. Using BMD as a gold standard, essential agreement (EA), categorical agreement (CA), major error (ME), and very major error (VME) were determined according to CLSI guidelines. CA and EA rate > 90%, ME rate < 3%, and VME rate < 1.5% were considered as acceptable criteria. Polymerase chain reaction and Sanger sequencing were performed to determine the carbapenem resistance genes of all 302 isolates. Results: A total of 302 strains were enrolled, among which 182 strains were from center 1 and 120 strains were from center 2. A percentage of 18.21% (55/302) of the enrolled isolates were resistant to ceftazidime–avibactam. The CA rates of the gradient diffusion strip method for Enterobacterales and P. aeruginosa were 100% and 98.65% (73/74), respectively, and the EA rates were 97.37% (222/228) and 98.65% (73/74), respectively. The CA rates of the disk diffusion method for Enterobacterales and P. aeruginosa were 100% and 95.95% (71/74), respectively. No VMEs were found by using the gradient diffusion strip method, while the ME rate was 0.40% (1/247). No MEs were found by using the disk diffusion method, but the VME rate was 5.45% (3/55). Therefore, all the parameters of the gradient diffusion strip method were in line with acceptable criteria. For 31 blaKPC, 33 blaNDM, 7 blaIMP, and 2 blaVIM positive isolates, both CA and EA rates were 100%; no MEs or VMEs were detected by either method. For 15 carbapenemase-non-producing resistant isolates, the CA and EA rates of the gradient diffusion strips method were 100%. Whereas the CA rate of the disk diffusion method was 80.00% (12/15), the VME rate was 20.00% (3/15). Conclusion: The gradient diffusion strip method can meet the needs of clinical microbiological laboratories for testing the susceptibility of ceftazidime–avibactam drugs. However, the VME rate > 1.5% (5.45%) by the disk diffusion method. By comparison, the performance of the gradient diffusion strip method was better than that of the disk diffusion method.
Collapse
Affiliation(s)
- Jingjia Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Li
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ge Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Kang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Simeng Duan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiru Huangfu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Jia
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hongli Sun
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Moreira NK, Caierão J. Ceftazidime-avibactam: are we safe from class A carbapenemase producers' infections? Folia Microbiol (Praha) 2021; 66:879-896. [PMID: 34505209 DOI: 10.1007/s12223-021-00918-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 01/14/2023]
Abstract
Recently, new combinations of β-lactams and β-lactamase inhibitors became available, including ceftazidime-avibactam, and increased the ability to treat infections caused by carbapenem-resistant Enterobacterales (CRE). Despite the reduced time of clinical use, isolates expressing resistance to ceftazidime-avibactam have been reported, even during treatment or in patients with no previous contact with this drug. Here, we detailed review data on global ceftazidime-avibactam susceptibility, the mechanisms involved in resistance, and the molecular epidemiology of resistant isolates. Ceftazidime-avibactam susceptibility remains high (≥ 98.4%) among Enterobacterales worldwide, being lower among extended-spectrum β-lactamase (ESBL) producers and CRE. Alterations in class A β-lactamases are the major mechanism involved in ceftazidime-avibactam resistance, and mutations are mainly, but not exclusively, located in the Ω loop of these enzymes. Modifications in Klebsiella pneumoniae carbapenemase (KPC) 3 and KPC-2 have been observed by many authors, generating variants with different mutations, insertions, and/or deletions. Among these, the most commonly described is Asp179Tyr, both in KPC-3 (KPC-31 variant) and in KPC-2 (KPC-33 variant). Changes in membrane permeability and overexpression of efflux systems may also be associated with ceftazidime-avibactam resistance. Although several clones have been reported, ST258 with Asp179Tyr deserves special attention. Surveillance studies and rationale use are essential to retaining the activity of this and other antimicrobials against class A CRE.
Collapse
Affiliation(s)
- Natália Kehl Moreira
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil.
| | - Juliana Caierão
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil
| |
Collapse
|
12
|
Li X, Quan J, Ke H, Wu W, Feng Y, Yu Y, Jiang Y. Emergence of a KPC Variant Conferring Resistance to Ceftazidime-Avibactam in a Widespread ST11 Carbapenem-Resistant Klebsiella pneumoniae Clone in China. Front Microbiol 2021; 12:724272. [PMID: 34484166 PMCID: PMC8415713 DOI: 10.3389/fmicb.2021.724272] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection poses a great threat to public health worldwide, and KPC-2-producing strains are the main factors responsible for resistance to carbapenems in China. Ceftazidime/avibactam (CZA) is a novel β-lactam/β-lactamase inhibitor combination with good activity against KPC-2 carbapenemase and is becoming the most important option for treating KPC-producing CRKP infection. Here, we report the emergence of a novel KPC-2 variant, designated KPC-74, produced by K. pneumoniae strain KP55, that conferred CZA resistance in a patient after CZA exposure. The novel blaKPC–74 variant showed a deletion of 6 nucleotides at positions 712–717 compared with blaKPC–2, and this deletion resulted in the consequent deletion of glycine and valine at positions 239 and 240. Antimicrobial susceptibility testing showed that KP55 presents multidrug resistance, including resistance to CZA and ertapenem, but is susceptible to imipenem, meropenem, and colistin. The blaKPC–74 gene was located on a plasmid, as determined by S1-nuclease pulsed-field gel electrophoresis followed by southern blotting, and confirmed to be 133,766 bp in length by whole-genome sequencing on both the Illumina and MinION platforms. The CZA resistance phenotype of the novel KPC variant was confirmed by both transformation of the blaKPC–74-harboring plasmid and a blaKPC–74 gene cloning assay, showing a 64-fold higher CZA minimum inhibitory concentration (MIC) than the recipient strains. The G239_V240del observed in KPC-74 was outside the omega-loop region but was still close to the active site Ser70 and omega-loop in the protein tertiary structure. The enzyme kinetic parameters and IC50 values further indicated that the hydrolytic activity of the KPC-74 enzyme against ceftazidime was potentiated twofold and that the affinity between KPC-74 and avibactam was alleviated 17-fold compared with that of the KPC-2 allele. This CZA resistance mediated by KPC-74 could be selected after CZA therapy and evolved to be more diverse and heterogeneous. Surveillance of CZA resistance is urgently needed in clinical settings.
Collapse
Affiliation(s)
- Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jingjing Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Huanhuan Ke
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhao Wu
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
Huang YT, Kuo YW, Teng LJ, Liao CH, Hsueh PR. Comparison of Etest and broth microdilution for evaluating the susceptibility of Staphylococcus aureus and Streptococcus pneumoniae to ceftaroline and of carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa to ceftazidime/avibactam. J Glob Antimicrob Resist 2021; 26:301-307. [PMID: 34303027 DOI: 10.1016/j.jgar.2021.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/31/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Decreased susceptibility to ceftazidime/avibactam (CZA) and ceftaroline (CPT) has been reported during antimicrobial resistance surveillance and therapy. Conventional laboratories are unable to provide timely susceptibility testing for CZA and CPT because these antimicrobial agents are not incorporated in automated susceptibility testing systems. METHODS We evaluated Etest and the Sensititre broth microdilution (BMD) method for testing CZA against carbapenem-resistant Gram-negative bacilli and CPT against important Gram-positive cocci bloodstream isolates. Genotypes of carbapenemases in Enterobacterales were also determined using the Xpert® Carba-R assay. RESULTS Etest showed ≥90% agreement with Sensititre BMD for carbapenem-resistant Klebsiella pneumoniae (CRKP) (n = 187), carbapenem-resistant Escherichia coli (CREC) (n = 28) and Streptococcus pneumoniae (n = 35); however, the very major error rate exceeded 3%. Agreement between Etest and Sensititre BMD was <90% for carbapenem-resistant Pseudomonas aeruginosa (CRPA) (n = 81), methicillin-susceptible Staphylococcus aureus (MSSA) (n = 92) and methicillin-resistant S. aureus (MRSA) (n = 170). Both agents remained potent with a high susceptibility rate by Sensititre BMD as follows: CZA against CRKP (95.0%), CREC (89.3%) and CRPA (84.5%); and CPT against MSSA (100.0%), MRSA (95.3%) and S. pneumoniae (94.3%). CZA was active against blaKPC-carrying CRKP (98.5% susceptible), and resistance in the majority of CZA-resistant Enterobacterales isolates (6 of 10 CRKP and 2 of 3 CREC) was due to the presence of a metallo-β-lactamase gene. CONCLUSION Our results suggest that interpretation of susceptibility results obtained by Etest for both agents should be undertaken cautiously and remains challenging.
Collapse
Affiliation(s)
- Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yao-Wen Kuo
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Jene Teng
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chun-Hsing Liao
- College of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan; Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
KPC-Mediated Resistance to Ceftazidime-Avibactam and Collateral Effects in Klebsiella pneumoniae. Antimicrob Agents Chemother 2021; 65:e0089021. [PMID: 34228551 DOI: 10.1128/aac.00890-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Enterobacterales, such as Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae, represent a major threat to public health due to their rapid spread. Novel drug combinations such as ceftazidime-avibactam (CZA), combining a broad-spectrum cephalosporin along with a broad-spectrum β-lactamase inhibitor, have recently been introduced and have been shown to exhibit excellent activity toward multidrug-resistant KPC-producing Enterobacterales strains. However, CZA-resistant K. pneumoniae isolates are now being increasingly reported, mostly corresponding to producers of KPC variants. In this study, we evaluated in vitro the nature of the mutations in the KPC-2 and KPC-3 β-lactamase sequences (the most frequent KPC-type enzymes) that lead to CZA resistance and the subsequent effects of these mutations on susceptibility to other β-lactam antibiotics. Single-step in vitro selection assays were conducted, resulting in the identification of a series of mutations in the KPC sequence which conferred the ability of those mutated enzymes to confer resistance to CZA. Hence, 16 KPC-2 variants and 10 KPC-3 variants were obtained. Production of the KPC variants in an Escherichia coli recombinant strain resulted in a concomitant increased susceptibility to broad-spectrum cephalosporins and carbapenems, with the exceptions of ceftazidime and piperacillin-tazobactam, compared to wild-type KPC enzymes. Enzymatic assays showed that all of the KPC variants identified exhibited an increased affinity toward ceftazidime and a slightly decreased sensitivity to avibactam, sustaining their impact on CZA resistance. However, their respective carbapenemase activities were concurrently negatively impacted.
Collapse
|
15
|
Shi Q, Yin D, Han R, Guo Y, Zheng Y, Wu S, Yang Y, Li S, Zhang R, Hu F. Emergence and Recovery of Ceftazidime-avibactam Resistance in blaKPC-33-Harboring Klebsiella pneumoniae Sequence Type 11 Isolates in China. Clin Infect Dis 2021; 71:S436-S439. [PMID: 33367577 DOI: 10.1093/cid/ciaa1521] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This is the first report of ceftazidime-avibactam resistance caused by the blaKPC-33 mutation through the D179Y variant during the treatment of blaKPC-2-positive Klebsiella pneumoniae-related infections in China. The blaKPC-33-containing K. pneumoniae was susceptible to meropenem-vaborbactam, cefepime-zidebactam, tigecycline, and polymyxin B. The blaKPC-33 gene was located on a 77 551-bp transformable plasmid harboring qnrS1 and blaLAP-2. Detecting blaKPC-33-positive K. pneumoniae clinical strains is important for infection control.
Collapse
Affiliation(s)
- Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yonggui Zheng
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Shirong Li
- Laboratory Medicine, Huashan Hospital (West campus), Fudan University, Shanghai, China
| | - Rong Zhang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
16
|
Shapiro AB, Moussa SH, Carter NM, Gao N, Miller AA. Ceftazidime-Avibactam Resistance Mutations V240G, D179Y, and D179Y/T243M in KPC-3 β-Lactamase Do Not Alter Cefpodoxime-ETX1317 Susceptibility. ACS Infect Dis 2021; 7:79-87. [PMID: 33291867 DOI: 10.1021/acsinfecdis.0c00575] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mutations in KPC-2 and KPC-3 β-lactamase can confer resistance to the β-lactam/β-lactamase inhibitor antibacterial intravenous drug combination ceftazidime-avibactam, introduced in 2015. Avibactam was the first of the diazabicyclooctane class of non-β-lactam β-lactamase inhibitors to be approved for clinical use. The orally bioavailable prodrug ETX0282 of the diazabicyclooctane β-lactamase inhibitor ETX1317 is in clinical development in combination with the oral β-lactam prodrug cefpodoxime proxetil for use against complicated urinary tract infections. We investigated the effects of 3 ceftazidime-avibactam resistance mutations in KPC-3 (V240G, D179Y, and D179Y/T243M) on the ability of ETX1317 to overcome KPC-3-induced cefpodoxime resistance. Isogenic Escherichia coli strains, each expressing the wild-type or a mutant KPC-3 at similar levels, retained susceptibility to cefpodoxime-ETX1317 (1:2) with essentially identical minimal inhibitory concentrations of 0.125-0.25 μg/mL cefpodoxime. The KPC-3 mutations had little or no effect on the kinact/Ki values for inhibition by each of 3 diazabicyclooctanes: avibactam, durlobactam (ETX2514), and ETX1317. The KM values for hydrolysis of cefpodoxime were similar for all 4 variants, but the kcat values of the D179Y and D179Y/T243M variants were much lower than those of the wild-type and V240G mutant enzymes. All 4 KPC-3 variants formed stable, reversibly covalent complexes with ETX1317, but dissociation of ETX1317 was much slower from the D179Y and D179Y/T243M mutants than from the wild-type and V240G mutant enzymes. Thus, the KPC-3 variants examined here that cause resistance to ceftazidime-avibactam do not cause resistance to cefpodoxime-ETX1317.
Collapse
Affiliation(s)
- Adam B Shapiro
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| | - Samir H Moussa
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| | - Nicole M Carter
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| | - Ning Gao
- Discovery Sciences, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, United States
| | - Alita A Miller
- Entasis Therapeutics, Waltham, Massachusetts 02451, United States
| |
Collapse
|
17
|
KPC-53, a KPC-3 Variant of Clinical Origin Associated with Reduced Susceptibility to Ceftazidime-Avibactam. Antimicrob Agents Chemother 2020; 65:AAC.01429-20. [PMID: 33106265 DOI: 10.1128/aac.01429-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
This study reports on the characterization of a Klebsiella pneumoniae clinical isolate showing high-level resistance to ceftazidime-avibactam associated with the production of KPC-53, a KPC-3 variant exhibiting a Leu167Glu168 duplication in the Ω-loop and a loss of carbapenemase activity. Whole-genome sequencing (WGS) revealed the presence of two copies of bla KPC-53, located on a pKpQIL-like plasmid and on a plasmid prophage of the Siphoviridae family, respectively. The present findings provide new insights into the mechanisms of resistance to ceftazidime-avibactam.
Collapse
|
18
|
KPC Beta-Lactamases Are Permissive to Insertions and Deletions Conferring Substrate Spectrum Modifications and Resistance to Ceftazidime-Avibactam. Antimicrob Agents Chemother 2020; 64:AAC.01175-20. [PMID: 33020157 DOI: 10.1128/aac.01175-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022] Open
Abstract
To explore the mutational possibilities of insertions and deletions (indels) in the Klebsiella pneumoniae carbapenemase (KPC) beta-lactamase, we selected for ceftazidime-avibactam-resistant mutants. Of 96 screened mutants, we obtained 19 indels (2 to 15 amino acids), all located in the loops surrounding the active site. Three antibiotic susceptibility phenotypes emerged: an extended-spectrum-beta-lactamase-like phenotype, an activity restricted to ceftazidime, and a carbapenem-susceptible KPC-like phenotype. Tolerance for indels reflects the evolvability of KPC beta-lactamase, which could challenge the therapeutic management of patients.
Collapse
|