1
|
Mascary JB, Bordeau V, Nicolas I, Verdier MC, Rocheteau P, Cattoir V. Intracellular activity and in vivo efficacy in a mouse model of septic arthritis of the novel pseudopeptide Pep16 against Staphylococcus aureus clinical isolates. JAC Antimicrob Resist 2024; 6:dlae025. [PMID: 38410249 PMCID: PMC10895697 DOI: 10.1093/jacamr/dlae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Objectives Assessing the therapeutic potential of a novel antimicrobial pseudopeptide, Pep16, both in vitro and in vivo for the treatment of septic arthritis caused by Staphylococcus aureus. Methods Seven clinical isolates of S. aureus (two MRSA and five MSSA) were studied. MICs of Pep16 and comparators (vancomycin, teicoplanin, daptomycin and levofloxacin) were determined through the broth microdilution method. The intracellular activity of Pep16 and levofloxacin was assessed in two models of infection using non-professional (osteoblasts MG-63) or professional (macrophages THP-1) phagocytic cells. A mouse model of septic arthritis was used to evaluate the in vivo efficacy of Pep16 and vancomycin. A preliminary pharmacokinetic (PK) analysis was performed by measuring plasma concentrations using LC-MS/MS following a single subcutaneous injection of Pep16 (10 mg/kg). Results MICs of Pep16 were consistently at 8 mg/L for all clinical isolates of S. aureus (2- to 32-fold higher to those of comparators) while MBC/MIC ratios confirmed its bactericidal activity. Both Pep16 and levofloxacin (when used at 2 × MIC) significantly reduced the bacterial load of all tested isolates (two MSSA and two MRSA) within both osteoblasts and macrophages. In MSSA-infected mice, Pep16 demonstrated a significant (∼10-fold) reduction on bacterial loads in knee joints. PK analysis following a single subcutaneous administration of Pep16 revealed a gradual increase in plasma concentrations, reaching a peak of 5.6 mg/L at 12 h. Conclusions Pep16 is a promising option for the treatment of septic arthritis due to S. aureus, particularly owing to its robust intracellular activity.
Collapse
Affiliation(s)
- Jean-Baptiste Mascary
- Inserm U1230 BRM (Bacterial RNAs and Medicine), Université de Rennes, Rennes, France
- SAS Olgram, Bréhan, France
| | - Valérie Bordeau
- Inserm U1230 BRM (Bacterial RNAs and Medicine), Université de Rennes, Rennes, France
| | | | | | | | - Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, 2 rue Henri Le Guilloux, 35033 Rennes, France
- CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), CHU de Rennes, Rennes, France
| |
Collapse
|
2
|
Gao M, Ge X, Li Y, Zheng G, Cai J, Yao J, Wang T, Gao Y, Yan Y, Chen Y, Pan Y, Hu P. Lysosomal dysfunction in carbon black-induced lung disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167200. [PMID: 37742976 DOI: 10.1016/j.scitotenv.2023.167200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Carbon black (CB), a component of environmental particulate pollution derived from carbon sources, poses a significant threat to human health, particularly in the context of lung-related disease. This study aimed to investigate the detrimental effects of aggregated CB in the average micron scale on lung tissues and cells in vitro and in vivo. We observed that CB particles induced lung disorders characterized by enhanced expression of inflammation, necrosis, and fibrosis-related factors in vivo. In alveolar epithelial cells, CB exposure resulted in decreased cell viability, induction of cell death, and generation of reactive oxidative species, along with altered expression of proteins associated with lung disorders. Our findings suggested that the damaging effects of CB on the lung involved the targeting of lysosomes. Specifically, CB promoted lysosomal membrane permeabilization, while lysosomal alkalization mitigated the harmfulness of CB on lung cells. Additionally, we explored the protective effects of alkaloids derived from Nelumbinis plumula, with a focus on neferine, against CB-induced lung disorders. In conclusion, these findings contribute to a deeper understanding of the pathophysiological effects of CB particles on the lungs and propose a potential therapeutic approach for pollution-related diseases.
Collapse
Affiliation(s)
- Mingtong Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Xiao Ge
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Gege Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jun Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jiani Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Tianyi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yichang Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yuchen Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yinming Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China.
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
3
|
Kraut JA, Cheetham‐Wilkinson IJ, Swan LE, Stagi M, Kurtz I. Impact of various buffers and weak bases on lysosomal and intracellular pH: Implications for infectivity of SARS-CoV-2. FASEB Bioadv 2023; 5:149-155. [PMID: 37020747 PMCID: PMC10068769 DOI: 10.1096/fba.2022-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/21/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Acidification of the cellular lysosome is an important factor in infection of mammalian cells by SARS-CoV-2. Therefore, raising the pH of the lysosome would theoretically be beneficial in prevention or treatment of SARS-CoV-2 infection. Sodium bicarbonate, carbicarb, and THAM are buffers that can be used clinically to provide base to patients. To examine whether these bases could raise lysosomal pH and therefore be a primary or adjunctive treatment of SARS-CoV-2 infection, we measured lysosomal and intracellular pH of mammalian cells after exposure to each of these bases. Mammalian HEK293 cells expressing RpH-LAMP1-3xFLAG, a ratiometric sensor of lysosomal luminal pH, were first exposed to Hepes which was then switched to sodium bicarbonate, carbicarb, or THAM and lysosomal pH measured. In bicarbonate buffer the mean lysosomal pH was 4.3 ± 0.1 (n = 20); p = NS versus Hepes (n = 20). The mean lysosomal pH in bicarbonate/carbonate was 4.3 ± 0.1 (n = 21) versus Hepes (n = 21), p = NS. In THAM buffer the mean lysosomal pH was 4.7 ± 0.07 (n = 20) versus Hepes (4.6 ± 0.1, n = 20), p = NS. In addition, there was no statistical difference between pHi in bicarbonate, carbicarb or THAM solutions. Using the membrane permeable base NH4Cl (5 mM), lysosomal pH increased significantly to 5.9 ± 0.1 (n = 21) compared to Hepes (4.5 ± 0.07, n = 21); p < 0.0001. Similarly, exposure to 1 mM hydroxychloroquine significantly increased the lysosomal pH to (5.9 ± 0.06, n = 20) versus Hepes (4.3 ± 0.1, n = 20), p < 0.0001. Separately steady-state pHi was measured in HEK293 cells bathed in various buffers. In bicarbonate pHi was 7.29 ± 0.02 (n = 12) versus Hepes (7.45 ± 0.03, [n = 12]), p < 0.001. In cells bathed in carbicarb pHi was 7.27 ± 0.02 (n = 5) versus Hepes (7.43 ± 0.04, [n = 5]), p < 0.01. Cells bathed in THAM had a pHi of 7.25 ± 0.03 (n = 12) versus Hepes (7.44 ± 0.03 [n = 12]), p < 0.001. In addition, there was no statistical difference in pHi in bicarbonate, carbicarb or THAM solutions. The results of these studies indicate that none of the buffers designed to provide base to patients alters lysosomal pH at the concentrations used in this study and therefore would be predicted to be of no value in the treatment of SARS-CoV-2 infection. If the goal is to raise lysosomal pH to decrease the infectivity of SARS-CoV-2, utilizing lysosomal permeable buffers at the appropriate dose that is non-toxic appears to be a useful approach to explore.
Collapse
Affiliation(s)
- Jeffrey A. Kraut
- Medical and Research Services VHAGLA Healthcare System, UCLA Membrane Biology Laboratory, and Division of Nephrology VHAGLA Healthcare System and David Geffen School of MedicineLos AngelesCaliforniaUSA
| | - Izaak J. Cheetham‐Wilkinson
- Department of Cellular and Molecular Physiology, Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Laura E. Swan
- Department of Cellular and Molecular Physiology, Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Massimiliano Stagi
- Department of Cellular and Molecular Physiology, Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Ira Kurtz
- Division of Nephrology, Department of MedicineDavid Geffen School of MedicineLos AngelesCaliforniaUSA
- UCLA Brain Research InstituteLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Lu S, Wang L, Luo W, Wang G, Zhu Z, Liu Y, Gao H, Fu C, Ren J, Zhang Y, Zhang Y. Analysis of the epidemiological status, microbiology, treatment methods and financial burden of hematogenous osteomyelitis based on 259 patients in Northwest China. Front Endocrinol (Lausanne) 2023; 13:1097147. [PMID: 36686458 PMCID: PMC9846127 DOI: 10.3389/fendo.2022.1097147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background The incidence of hematogenous osteomyelitis is on the rise, and the prognosis is poor. There has been no large-scale epidemiological analysis of hematogenous osteomyelitis in the world, and the treatment method is still controversial. Methods A retrospective case study method was used to collect and analyze clinical data obtained from patients with hematogenous osteomyelitis in a tertiary hospital in Northwest China from January 1, 2011, to December 31, 2020. The aim of this study was to investigate the epidemiological status, microbiological characteristics, treatment and financial burden of hematogenous osteomyelitis in Northwest China to explore the therapeutic effects of different treatment methods, elucidate the epidemiological characteristics of hematogenous osteomyelitis and to provide a basis for the choice of treatment. Results We included 259 patients with hematogenous osteomyelitis, including 96 patients with acute hematogenous osteomyelitis and 163 patients with chronic hematogenous osteomyelitis. The cause of the disease was not obvious in most patients, the sex ratio of males to females was 1.98, and the three most common infected sites were the tibia, femur and phalanx. Regarding preoperative serum inflammatory markers, the rate of positivity for ESR was the highest at 67.58%. Among pathogenic microorganisms, Staphylococcus aureus was the most common. Regarding the financial burden, the median total cost per patient was 25,754 RMB, and medications accounted for the largest proportion of the main costs. Conclusions The most common pathogen associated with HO infection was MSSA. Oxacillin has good PK and PD and is recommended as the first-line drug. Some blood-borne bone infections may lead to complications, such as pulmonary infection through bacteremia, which requires early detection to avoid a missed diagnosis. Regarding surgical intervention, debridement plus absorbable calcium sulfate bone cement and calcium sulfate calcium phosphate bone cement exclusion have achieved good therapeutic effects, but they are worthy of further in-depth research. Regarding the financial burden, the median total cost per patient was 25,754 RMB. The financial burden of blood-borne osteomyelitis was lower than that of traumatic osteomyelitis. Among the main costs, drugs accounted for the largest proportion.
Collapse
Affiliation(s)
- Shuaikun Lu
- Department of Orthopaedics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Linhu Wang
- Department of Orthopaedics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Wen Luo
- Department of Ultrasound, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Guoliang Wang
- Department of Orthopaedics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhenfeng Zhu
- Department of Orthopaedics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yunyan Liu
- Department of Orthopaedics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Hao Gao
- Department of Orthopaedics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Congxiao Fu
- Department of Orthopaedics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Jun Ren
- Department of Orthopaedics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yunfei Zhang
- Department of Orthopaedics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Orthopaedics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
5
|
Zelmer AR, Nelson R, Richter K, Atkins GJ. Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis. Bone Res 2022; 10:53. [PMID: 35961964 PMCID: PMC9374758 DOI: 10.1038/s41413-022-00227-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Approximately 40% of treatments of chronic and recurrent osteomyelitis fail in part due to bacterial persistence. Staphylococcus aureus, the predominant pathogen in human osteomyelitis, is known to persist by phenotypic adaptation as small-colony variants (SCVs) and by formation of intracellular reservoirs, including those in major bone cell types, reducing susceptibility to antibiotics. Intracellular infections with S. aureus are difficult to treat; however, there are no evidence-based clinical guidelines addressing these infections in osteomyelitis. We conducted a systematic review of the literature to determine the demonstrated efficacy of all antibiotics against intracellular S. aureus relevant to osteomyelitis, including protein biosynthesis inhibitors (lincosamides, streptogramins, macrolides, oxazolidines, tetracyclines, fusidic acid, and aminoglycosides), enzyme inhibitors (fluoroquinolones and ansamycines), and cell wall inhibitors (beta-lactam inhibitors, glycopeptides, fosfomycin, and lipopeptides). The PubMed and Embase databases were screened for articles related to intracellular S. aureus infections that compared the effectiveness of multiple antibiotics or a single antibiotic together with another treatment, which resulted in 34 full-text articles fitting the inclusion criteria. The combined findings of these studies were largely inconclusive, most likely due to the plethora of methodologies utilized. Therefore, the reported findings in the context of the models employed and possible solutions for improved understanding are explored here. While rifampicin, oritavancin, linezolid, moxifloxacin and oxacillin were identified as the most effective potential intracellular treatments, the scientific evidence for these is still relatively weak. We advocate for more standardized research on determining the intracellular effectiveness of antibiotics in S. aureus osteomyelitis to improve treatments and patient outcomes.
Collapse
Affiliation(s)
- Anja R Zelmer
- Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Renjy Nelson
- Department of Infectious Diseases, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia.,Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA, 5011, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
6
|
Maurin C, Courrier E, He Z, Rigaill J, Josse J, Laurent F, Gain P, Thuret G, Verhoeven PO. Key Role of Staphylococcal Fibronectin-Binding Proteins During the Initial Stage of Staphylococcus aureus Keratitis in Humans. Front Cell Infect Microbiol 2021; 11:745659. [PMID: 34858871 PMCID: PMC8630648 DOI: 10.3389/fcimb.2021.745659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 12/25/2022] Open
Abstract
Objectives Staphylococcus aureus is one of the main causes of bacterial keratitis in humans. This study was aimed at investigating the mechanisms of S. aureus adhesion to the human corneal epithelium involved during the initial stage of infectious keratitis. Methods Human corneas stored in a specific active storage machine that restores a normal pluristratified epithelium were used to assess S. aureus adhesion level to intact and injured tissues using immunostaining. S. aureus adhesion to immobilized fibronectin was measured in microtiter plate. Internalization of S. aureus clinical isolates recovered from keratitis was assessed on human corneal epithelial HCE-2 cells. Results Superficial corneal injury unmasked fibronectin molecules expressed within the human corneal epithelium. S. aureus adhesion level was increased by 117-fold in the area of injured epithelium (p < 0.0001). The deletion of staphylococcal fnbA/B genes decreased by 71% the adhesion level to immobilized fibronectin (p < 0.001). The deletion of fnbA/B genes and the incubation of the corneas with anti-fibronectin blocking antibodies prior to the infection significantly reduced the S. aureus adhesion level to injured corneal epithelium (p < 0.001). Finally, S. aureus clinical isolates triggered its internalization in human corneal epithelial cells as efficiently as the 8325-4 wt. Conclusion S. aureus was almost unable to bind the intact corneal epithelium, whereas a superficial epithelial injury of the corneal epithelium strongly increased S. aureus adhesion, which is mainly driven by the interaction between staphylococcal fibronectin-binding proteins and unmasked fibronectin molecules located underneath the most superficial layer of the corneal epithelium.
Collapse
Affiliation(s)
- Corantin Maurin
- Corneal Graft Biology, Engineering and Imaging Laboratory (BiiGC), University of St-Etienne, St-Etienne, France
| | - Emilie Courrier
- Corneal Graft Biology, Engineering and Imaging Laboratory (BiiGC), University of St-Etienne, St-Etienne, France
| | - Zhiguo He
- Corneal Graft Biology, Engineering and Imaging Laboratory (BiiGC), University of St-Etienne, St-Etienne, France
| | - Josselin Rigaill
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France.,Laboratory of Infectious Agents and Hygiene, University Hospital of St-Etienne, St-Etienne, France
| | - Jérôme Josse
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal Pathogenesis Team, University of Lyon, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Frédéric Laurent
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal Pathogenesis Team, University of Lyon, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France.,Department of Bacteriology, Institute for Infectious Agents, Hospices Civiles de Lyon, Lyon, France.,Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
| | - Philippe Gain
- Corneal Graft Biology, Engineering and Imaging Laboratory (BiiGC), University of St-Etienne, St-Etienne, France.,Department of Ophthalmology, University Hospital, St-Etienne, France
| | - Gilles Thuret
- Corneal Graft Biology, Engineering and Imaging Laboratory (BiiGC), University of St-Etienne, St-Etienne, France.,Department of Ophthalmology, University Hospital, St-Etienne, France
| | - Paul O Verhoeven
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, University of Lyon, University of St-Etienne, INSERM U1111, CNRS UMR5308, ENS de Lyon, UCBL1, St-Etienne, France.,Laboratory of Infectious Agents and Hygiene, University Hospital of St-Etienne, St-Etienne, France
| |
Collapse
|
7
|
Marro FC, Abad L, Blocker AJ, Laurent F, Josse J, Valour F. In vitro antibiotic activity against intraosteoblastic Staphylococcus aureus: a narrative review of the literature. J Antimicrob Chemother 2021; 76:3091-3102. [PMID: 34459881 PMCID: PMC8598303 DOI: 10.1093/jac/dkab301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus – a major aetiological agent of bone and joint infection (BJI) – is associated with a high risk of relapse and chronicity, in part due to its ability to invade and persist in non-professional phagocytic bone cells such as osteoblasts. This intracellular reservoir protects S. aureus from the action of the immune system and most antibiotics. To date, the choice of antimicrobial strategies for BJI treatment mostly relies on standard susceptibility testing, bone penetration of antibiotics and their ‘antibiofilm’ activity. Despite the role of intracellular persistent S. aureus in the development of chronic infection, the ability of antibiotics to target the S. aureus intraosteoblastic reservoir is not considered in therapeutic choices but might represent a key determinant of treatment outcome. This review provides an overview of the intracellular pharmacokinetics of antistaphylococcal drugs used in the treatment of BJI and of their ability to target intraosteoblastic S. aureus. Thirteen studies focusing on the intraosteoblastic activity of antibiotics against S. aureus were reviewed, all relying on in vitro models of osteoblast infection. Despite varying incubation times, multiplicities of infection, bacterial strains, and the types of infected cell lines, rifamycins and fluoroquinolones remain the two most potent antimicrobial classes for intraosteoblastic S. aureus eradication, consistent with clinical data showing a superiority of this combination therapy in S. aureus orthopaedic device-related infections.
Collapse
Affiliation(s)
- Florian C Marro
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France.,Evotec ID Lyon, In Vitro Biology, Infectious Diseases and Antibacterials Unit, Gerland, 69007 Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| | - Lélia Abad
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Ariel J Blocker
- Evotec ID Lyon, In Vitro Biology, Infectious Diseases and Antibacterials Unit, Gerland, 69007 Lyon, France
| | - Frédéric Laurent
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France.,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc) Lyon, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc) Lyon, Hospices Civils de Lyon, Lyon, France
| | - Florent Valour
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc) Lyon, Hospices Civils de Lyon, Lyon, France.,Service des maladies infectieuses et tropicales, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|