1
|
Calgaro L, Giubilato E, Lamon L, Semenzin E, Marcomini A. Investigating the environmental fate of active pharmaceutical compounds in a coastal lagoon using a multimedia level III fugacity model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36217-6. [PMID: 40080272 DOI: 10.1007/s11356-025-36217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
The use of active pharmaceutical ingredients (APIs) has enhanced life quality and longevity but poses significant environmental risks to ecosystems and human health. Evidence-based risk assessments are essential for addressing these issues, requiring detailed data on API presence, behavior, and effects in the environment. In particular, predictive exposure models offer a cost-effective tool to support such investigations. This study focuses on the application of a multimedia level III fugacity model to estimate the predicted environmental concentrations (PECs) and to simulate transport, distribution, and persistence of nine APIs in the Venice Lagoon (Italy), a transitional environment subjected to multiple anthropogenic stressors. Concentrations of the studied APIs in water were estimated within one order of magnitude of measured data, while the model underestimated the concentration of azithromycin and 17-β-estradiol in the sediments due to water half-life overestimation and lack of information about unmonitored emission sources. In detail, the highest levels of APIs in the water were estimated for amoxicillin and clarithromycin, while sediments showed a significant presence of azithromycin and ciprofloxacin. Model results also showed the possibility for sediments to act as sink for azithromycin, ciprofloxacin, erythromycin, estrone, and 17-β-estradiol. For all target APIs, degradation in the water column and adjective outflow were the most important elimination processes, while degradation in the sediments was significant only for erythromycin, ciprofloxacin, and clarithromycin. Monte-Carlo uncertainty and sensitivity analysis showed that degradation in water, affinity to organic matter, and sediment dynamics were the parameters with the strongest influence on model's results. Overall, this work provided valuable information on the environmental fate and behavior of the investigated APIs in a complex transitional waterbody such as the Venice Lagoon and can be useful to support future environmental risk assessments as well as studies to evaluate the effects of emission control measures (e.g., restriction of use, substitution, or implementation of new technologies for wastewater treatment) on APIs environmental exposure.
Collapse
Affiliation(s)
- Loris Calgaro
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy
| | - Lara Lamon
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172, Venice Mestre, Italy.
| |
Collapse
|
2
|
Vermeulen H, Catry B, Catteau L, Hens N. Community antibiotic consumption in the European Union/European economic area: late-pandemic rebound and seasonality analysis. Arch Public Health 2024; 82:197. [PMID: 39482731 PMCID: PMC11526539 DOI: 10.1186/s13690-024-01427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND A rebound in antibiotic consumption has been observed in the European community at the end of the COVID-19 pandemic. Here we evaluate the extent of this increase, when it exactly occurred, and how the seasonality in antibiotic use changed during the late-pandemic period. METHODS Data on community antibiotic consumption were available from the European Surveillance of Antimicrobial Consumption Network for 28 European countries between 2015 and 2022. Antibiotic consumption was expressed as defined daily doses per 1000 inhabitants per day (DID). The evolution in antibiotic use was investigated using non-linear changepoint mixed models for quarterly and yearly data. RESULTS An increase in overall antibiotic consumption was found in Europe between 2021 and 2022, mainly due to an increase in the consumption of penicillins, macrolides, lincosamides and streptogramins, and other β-lactam antibacterials. The analysis of quarterly data estimated a gradual increase in overall antibiotic consumption of 0.55 DID per quarter, as of the second quarter of 2020 and a decrease in seasonal variation of 1.64 DID between the first and second quarter of 2020. The changepoint analysis of yearly data estimated an increase of 3.33 DID in overall antibiotic consumption between 2021 and 2022. CONCLUSIONS A gradual but significant rebound in the use of antibiotics was found in Europe, along with a decrease in its seasonal variation. The rapid rise in antibiotic consumption above pre-pandemic levels in several countries underlines the importance of continued antimicrobial stewardship.
Collapse
Affiliation(s)
- Helene Vermeulen
- Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BIOSTAT), Data Science Institute (DSI), Hasselt University, Hasselt, Belgium.
| | - Boudewijn Catry
- Department of Epidemiology and public health, Sciensano, Brussels, Belgium
- Faculty of Medecine, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Lucy Catteau
- Department of Epidemiology and public health, Sciensano, Brussels, Belgium
- Dean Service, Université de Mons (UMons), Mons, Belgium
| | - Niel Hens
- Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BIOSTAT), Data Science Institute (DSI), Hasselt University, Hasselt, Belgium
- Centre for Health Economic Research and Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Zhao L, Lv Z, Lin L, Li X, Xu J, Huang S, Chen Y, Fu Y, Peng C, Cao T, Ke Y, Xia X. Impact of COVID-19 pandemic on profiles of antibiotic-resistant genes and bacteria in hospital wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122133. [PMID: 37399936 DOI: 10.1016/j.envpol.2023.122133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/05/2023]
Abstract
The COVID-19 pandemic has severely affected healthcare worldwide and has led to the excessive use of disinfectants and antimicrobial agents. However, the impact of excessive disinfection measures and specific medication prescriptions on the development and dissemination of bacterial drug resistance during the pandemic remains unclear. This study investigated the influence of the pandemic on the composition of antibiotics, antibiotic resistance genes (ARGs), and pathogenic communities in hospital wastewater using ultra-performance liquid chromatography-tandem mass spectrometry and metagenome sequencing. The overall level of antibiotics decreased after the COVID-19 outbreak, whereas the abundance of various ARGs increased in hospital wastewater. After COVID-19 outbreak, blaOXA, sul2, tetX, and qnrS had higher concentrations in winter than in summer. Seasonal factors and the COVID-19 pandemic have affected the microbial structure in wastewater, especially of Klebsiella, Escherichia, Aeromonas, and Acinetobacter. Further analysis revealed the co-existence of qnrS, blaNDM, and blaKPC during the pandemic. Various ARGs significantly correlated with mobile genetic elements, implying their potential mobility. A network analysis revealed that many pathogenic bacteria (Klebsiella, Escherichia, and Vibrio) were correlated with ARGs, indicating the existence of multi-drug resistant pathogens. Although the calculated resistome risk score did not change significantly, our results suggest that the COVID-19 pandemic shifted the composition of residual antibiotics and ARGs in hospital wastewater and contributed to the dissemination of bacterial drug resistance.
Collapse
Affiliation(s)
- Liang Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Liangqiang Lin
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaowei Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jian Xu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuhua Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yulin Fu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Changfeng Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tingting Cao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xi Xia
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
A Time Series Analysis Evaluating Antibiotic Prescription Rates in Long-Term Care during the COVID-19 Pandemic in Alberta and Ontario, Canada. Antibiotics (Basel) 2022; 11:antibiotics11081001. [PMID: 35892391 PMCID: PMC9330385 DOI: 10.3390/antibiotics11081001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
The COVID-19 pandemic affected access to care, and the associated public health measures influenced the transmission of other infectious diseases. The pandemic has dramatically changed antibiotic prescribing in the community. We aimed to determine the impact of the COVID-19 pandemic and the resulting control measures on oral antibiotic prescribing in long-term care facilities (LTCFs) in Alberta and Ontario, Canada using linked administrative data. Antibiotic prescription data were collected for LTCF residents 65 years and older in Alberta and Ontario from 1 January 2017 until 31 December 2020. Weekly prescription rates per 1000 residents, stratified by age, sex, antibiotic class, and selected individual agents, were calculated. Interrupted time series analyses using SARIMA models were performed to test for changes in antibiotic prescription rates after the start of the pandemic (1 March 2020). The average annual cohort size was 18,489 for Alberta and 96,614 for Ontario. A significant decrease in overall weekly prescription rates after the start of the pandemic compared to pre-pandemic was found in Alberta, but not in Ontario. Furthermore, a significant decrease in prescription rates was observed for antibiotics mainly used to treat respiratory tract infections: amoxicillin in both provinces (Alberta: −0.6 per 1000 LTCF residents decrease in weekly prescription rate, p = 0.006; Ontario: −0.8, p < 0.001); and doxycycline (−0.2, p = 0.005) and penicillin (−0.04, p = 0.014) in Ontario. In Ontario, azithromycin was prescribed at a significantly higher rate after the start of the pandemic (0.7 per 1000 LTCF residents increase in weekly prescription rate, p = 0.011). A decrease in prescription rates for antibiotics that are largely used to treat respiratory tract infections is in keeping with the lower observed rates for respiratory infections resulting from pandemic control measures. The results should be considered in the contexts of different LTCF systems and provincial public health responses to the pandemic.
Collapse
|