• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4629798)   Today's Articles (279)   Subscriber (49734)
For: Ventouras EM, Monoyiou EA, Ktonas PY, Paparrigopoulos T, Dikeos DG, Uzunoglu NK, Soldatos CR. Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: a feasibility study. Comput Methods Programs Biomed 2005;78:191-207. [PMID: 15899305 DOI: 10.1016/j.cmpb.2005.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/01/2005] [Accepted: 02/25/2005] [Indexed: 05/02/2023]
Number Cited by Other Article(s)
1
Toban G, Poudel K, Hong D. REM Sleep Stage Identification with Raw Single-Channel EEG. Bioengineering (Basel) 2023;10:1074. [PMID: 37760176 PMCID: PMC10525287 DOI: 10.3390/bioengineering10091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]  Open
2
Wei L, Ventura S, Ryan MA, Mathieson S, Boylan GB, Lowery M, Mooney C. Deep-spindle: An automated sleep spindle detection system for analysis of infant sleep spindles. Comput Biol Med 2022;150:106096. [PMID: 36162199 DOI: 10.1016/j.compbiomed.2022.106096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/14/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
3
Wei L, Ventura S, Mathieson S, Boylan G, Lowery M, Mooney C. Spindle-AI: Sleep spindle number and duration estimation in infant EEG. IEEE Trans Biomed Eng 2021;69:465-474. [PMID: 34280088 DOI: 10.1109/tbme.2021.3097815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
4
Sergeev K, Runnova A, Zhuravlev M, Kolokolov O, Akimova N, Kiselev A, Titova A, Slepnev A, Semenova N, Penzel T. Wavelet skeletons in sleep EEG-monitoring as biomarkers of early diagnostics of mild cognitive impairment. CHAOS (WOODBURY, N.Y.) 2021;31:073110. [PMID: 34340349 DOI: 10.1063/5.0055441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
5
Wei L, Ventura S, Lowery M, Ryan MA, Mathieson S, Boylan GB, Mooney C. Random Forest-based Algorithm for Sleep Spindle Detection in Infant EEG. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020;2020:58-61. [PMID: 33017930 DOI: 10.1109/embc44109.2020.9176339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
6
Liang SF, Shih YH, Hu YH, Kuo CE. A Method for Napping Time Recommendation Using Electrical Brain Activity. IEEE Trans Cogn Dev Syst 2020. [DOI: 10.1109/tcds.2020.2991176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
7
Yang S, Li B, Zhang Y, Duan M, Liu S, Zhang Y, Feng X, Tan R, Huang L, Zhou F. Selection of features for patient-independent detection of seizure events using scalp EEG signals. Comput Biol Med 2020;119:103671. [DOI: 10.1016/j.compbiomed.2020.103671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022]
8
Kinoshita T, Fujiwara K, Kano M, Ogawa K, Sumi Y, Matsuo M, Kadotani H. Sleep Spindle Detection Using RUSBoost and Synchrosqueezed Wavelet Transform. IEEE Trans Neural Syst Rehabil Eng 2020;28:390-398. [PMID: 31944960 DOI: 10.1109/tnsre.2020.2964597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
9
Fernandez LMJ, Lüthi A. Sleep Spindles: Mechanisms and Functions. Physiol Rev 2019;100:805-868. [PMID: 31804897 DOI: 10.1152/physrev.00042.2018] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]  Open
10
Lachner-Piza D, Epitashvili N, Schulze-Bonhage A, Stieglitz T, Jacobs J, Dümpelmann M. A single channel sleep-spindle detector based on multivariate classification of EEG epochs: MUSSDET. J Neurosci Methods 2018;297:31-43. [DOI: 10.1016/j.jneumeth.2017.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 11/14/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
11
Al-salman W, Li Y, Wen P, Diykh M. An efficient approach for EEG sleep spindles detection based on fractal dimension coupled with time frequency image. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
12
Sleep spindle detection based on non-experts: A validation study. PLoS One 2017;12:e0177437. [PMID: 28493938 PMCID: PMC5426701 DOI: 10.1371/journal.pone.0177437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 04/27/2017] [Indexed: 11/30/2022]  Open
13
Kazemipour A, Liu J, Solarana K, Nagode DA, Kanold PO, Wu M, Babadi B. Fast and Stable Signal Deconvolution via Compressible State-Space Models. IEEE Trans Biomed Eng 2017;65:74-86. [PMID: 28422648 DOI: 10.1109/tbme.2017.2694339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
14
Automatic detection of sleep spindles with the use of STFT, EMD and DWT methods. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2445-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
15
Sleep Spindles as an Electrographic Element: Description and Automatic Detection Methods. Neural Plast 2016;2016:6783812. [PMID: 27478649 PMCID: PMC4958487 DOI: 10.1155/2016/6783812] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]  Open
16
O'Reilly C, Nielsen T. Automatic sleep spindle detection: benchmarking with fine temporal resolution using open science tools. Front Hum Neurosci 2015;9:353. [PMID: 26157375 PMCID: PMC4478395 DOI: 10.3389/fnhum.2015.00353] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/01/2015] [Indexed: 11/13/2022]  Open
17
Durka PJ, Malinowska U, Zieleniewska M, O'Reilly C, Różański PT, Żygierewicz J. Spindles in Svarog: framework and software for parametrization of EEG transients. Front Hum Neurosci 2015;9:258. [PMID: 26005412 PMCID: PMC4424848 DOI: 10.3389/fnhum.2015.00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/21/2015] [Indexed: 11/13/2022]  Open
18
Kabir MM, Tafreshi R, Boivin DB, Haddad N. Enhanced automated sleep spindle detection algorithm based on synchrosqueezing. Med Biol Eng Comput 2015;53:635-44. [DOI: 10.1007/s11517-015-1265-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 02/27/2015] [Indexed: 11/30/2022]
19
O'Reilly C, Godbout J, Carrier J, Lina JM. Combining time-frequency and spatial information for the detection of sleep spindles. Front Hum Neurosci 2015;9:70. [PMID: 25745392 PMCID: PMC4333813 DOI: 10.3389/fnhum.2015.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/27/2015] [Indexed: 11/13/2022]  Open
20
Ujma PP, Gombos F, Genzel L, Konrad BN, Simor P, Steiger A, Dresler M, Bódizs R. A comparison of two sleep spindle detection methods based on all night averages: individually adjusted vs. fixed frequencies. Front Hum Neurosci 2015;9:52. [PMID: 25741264 PMCID: PMC4330897 DOI: 10.3389/fnhum.2015.00052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/19/2015] [Indexed: 11/13/2022]  Open
21
Gemignani J, Agrimi J, Cheli E, Gemignani A, Laurino M, Allegrini P, Landi A, Menicucci D. Pattern recognition with adaptive-thresholds for sleep spindle in high density EEG signals. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015;2015:594-7. [PMID: 26736332 PMCID: PMC4888948 DOI: 10.1109/embc.2015.7318432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
22
Ktonas PY, Ventouras EC. Automated detection of sleep spindles in the scalp EEG and estimation of their intracranial current sources: comments on techniques and on related experimental and clinical studies. Front Hum Neurosci 2014;8:998. [PMID: 25540616 PMCID: PMC4261733 DOI: 10.3389/fnhum.2014.00998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022]  Open
23
Improved spindle detection through intuitive pre-processing of electroencephalogram. J Neurosci Methods 2014;233:1-12. [DOI: 10.1016/j.jneumeth.2014.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 11/22/2022]
24
O'Reilly C, Gosselin N, Carrier J, Nielsen T. Montreal Archive of Sleep Studies: an open-access resource for instrument benchmarking and exploratory research. J Sleep Res 2014;23:628-635. [DOI: 10.1111/jsr.12169] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/04/2014] [Indexed: 11/30/2022]
25
Camilleri TA, Camilleri KP, Fabri SG. Automatic detection of spindles and K-complexes in sleep EEG using switching multiple models. Biomed Signal Process Control 2014. [DOI: 10.1016/j.bspc.2014.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
26
Assessing EEG sleep spindle propagation. Part 2: Experimental characterization. J Neurosci Methods 2014;221:215-27. [DOI: 10.1016/j.jneumeth.2013.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/27/2013] [Accepted: 08/13/2013] [Indexed: 11/22/2022]
27
Ventouras EM, Panagi M, Tsekou H, Paparrigopoulos TJ, Ktonas PY. Amplitude normalization applied to an artificial neural network-based automatic sleep spindle detection system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014;2014:3240-3243. [PMID: 25570681 DOI: 10.1109/embc.2014.6944313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
28
Nonclercq A, Urbain C, Verheulpen D, Decaestecker C, Van Bogaert P, Peigneux P. Sleep spindle detection through amplitude–frequency normal modelling. J Neurosci Methods 2013;214:192-203. [DOI: 10.1016/j.jneumeth.2013.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
29
Ventouras EM, Economou NT, Kritikou I, Tsekou H, Paparrigopoulos TJ, Ktonas PY. Performance evaluation of an Artificial Neural Network automatic spindle detection system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012;2012:4328-4331. [PMID: 23366885 DOI: 10.1109/embc.2012.6346924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
30
Babadi B, McKinney SM, Tarokh V, Ellenbogen JM. DiBa: a data-driven Bayesian algorithm for sleep spindle detection. IEEE Trans Biomed Eng 2011;59:483-93. [PMID: 22084041 DOI: 10.1109/tbme.2011.2175225] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
31
Causa L, Held CM, Causa J, Estévez PA, Perez CA, Chamorro R, Garrido M, Algarín C, Peirano P. Automated Sleep-Spindle Detection in Healthy Children Polysomnograms. IEEE Trans Biomed Eng 2010;57:2135-46. [DOI: 10.1109/tbme.2010.2052924] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
32
Ray LB, Fogel SM, Smith CT, Peters KR. Validating an automated sleep spindle detection algorithm using an individualized approach. J Sleep Res 2010;19:374-8. [PMID: 20149067 DOI: 10.1111/j.1365-2869.2009.00802.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
33
Priano L, Saccomandi F, Mauro A, Guiot C. Non-linear recurrence analysis of NREM human sleep microstructure discloses deterministic oscillation patterns related to sleep stage transitions and sleep maintenance. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010;2010:4934-4937. [PMID: 21096666 DOI: 10.1109/iembs.2010.5627237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
34
Application of paraconsistent artificial neural networks as a method of aid in the diagnosis of Alzheimer disease. J Med Syst 2009;34:1073-81. [PMID: 20703601 DOI: 10.1007/s10916-009-9325-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
35
Detection of signs of brain dysfunction in epileptic children by recognition of transient changes in the correlation of seizure-free EEG. Brain Topogr 2008;21:43-51. [PMID: 18566884 DOI: 10.1007/s10548-008-0057-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
36
Saccomandi F, Priano L, Mauro A, Nerino R, Guiot C. Automatic detection of transient EEG events during sleep can be improved using a multi-channel approach. Clin Neurophysiol 2008;119:959-67. [DOI: 10.1016/j.clinph.2007.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 12/09/2007] [Accepted: 12/22/2007] [Indexed: 10/22/2022]
37
Abe JM, Lopes HFDS, Anghinah R. Paraconsistent artificial neural networks and Alzheimer disease: a preliminary study. Dement Neuropsychol 2007;1:241-247. [PMID: 29213396 PMCID: PMC5619001 DOI: 10.1590/s1980-57642008dn10300004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
38
Huupponen E, Gómez-Herrero G, Saastamoinen A, Värri A, Hasan J, Himanen SL. Development and comparison of four sleep spindle detection methods. Artif Intell Med 2007;40:157-70. [PMID: 17555950 DOI: 10.1016/j.artmed.2007.04.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 03/20/2007] [Accepted: 04/11/2007] [Indexed: 11/23/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA