1
|
Song W, Jayaprakash N, Saleknezhad N, Puleo C, Al-Abed Y, Martin JH, Zanos S. Transspinal Focused Ultrasound Suppresses Spinal Reflexes in Healthy Rats. Neuromodulation 2024; 27:614-624. [PMID: 37530695 DOI: 10.1016/j.neurom.2023.04.476] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES Low-intensity, focused ultrasound (FUS) is an emerging noninvasive neuromodulation approach, with improved spatial and temporal resolution and penetration depth compared to other noninvasive electrical stimulation strategies. FUS has been used to modulate circuits in the brain and the peripheral nervous system, however, its potential to modulate spinal circuits is unclear. In this study, we assessed the effect of trans-spinal FUS (tsFUS) on spinal reflexes in healthy rats. MATERIALS AND METHODS tsFUS targeting different spinal segments was delivered for 1 minute, under anesthesia. Monosynaptic H-reflex of the sciatic nerve, polysynaptic flexor reflex of the sural nerve, and withdrawal reflex tested with a hot plate were measured before, during, and after tsFUS. RESULTS tsFUS reversibly suppresses the H-reflex in a spinal segment-, acoustic pressure- and pulse-repetition frequency (PRF)-dependent manner. tsFUS with high PRF augments the degree of homosynaptic depression of the H-reflex observed with paired stimuli. It suppresses the windup of components of the flexor reflex associated with slower, C-afferent, but not faster, A- afferent fibers. Finally, it increases the latency of the withdrawal reflex. tsFUS does not elicit neuronal loss in the spinal cord. CONCLUSIONS Our study provides evidence that tsFUS reversibly suppresses spinal reflexes and suggests that tsFUS could be a safe and effective strategy for spinal cord neuromodulation in disorders associated with hyperreflexia, including spasticity after spinal cord injury and painful syndromes.
Collapse
Affiliation(s)
- Weiguo Song
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Nafiseh Saleknezhad
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chris Puleo
- General Electric Research, Niskayuna, NY, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY.
| |
Collapse
|
2
|
Park TY, Koh H, Lee W, Park SH, Chang WS, Kim H. Real-Time Acoustic Simulation Framework for tFUS: A Feasibility Study Using Navigation System. Neuroimage 2023; 282:120411. [PMID: 37844771 DOI: 10.1016/j.neuroimage.2023.120411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023] Open
Abstract
Transcranial focused ultrasound (tFUS), in which acoustic energy is focused on a small region in the brain through the skull, is a non-invasive therapeutic method with high spatial resolution and depth penetration. Image-guided navigation has been widely utilized to visualize the location of acoustic focus in the cranial cavity. However, this system is often inaccurate because of the significant aberrations caused by the skull. Therefore, acoustic simulations using a numerical solver have been widely adopted to compensate for this inaccuracy. Although the simulation can predict the intracranial acoustic pressure field, real-time application during tFUS treatment is almost impossible due to the high computational cost. In this study, we propose a neural network-based real-time acoustic simulation framework and test its feasibility by implementing a simulation-guided navigation (SGN) system. Real-time acoustic simulation is performed using a 3D conditional generative adversarial network (3D-cGAN) model featuring residual blocks and multiple loss functions. This network was trained by the conventional numerical acoustic simulation program (i.e., k-Wave). The SGN system is then implemented by integrating real-time acoustic simulation with a conventional image-guided navigation system. The proposed system can provide simulation results with a frame rate of 5 Hz (i.e., about 0.2 s), including all processing times. In numerical validation (3D-cGAN vs. k-Wave), the average peak intracranial pressure error was 6.8 ± 5.5%, and the average acoustic focus position error was 5.3 ± 7.7 mm. In experimental validation using a skull phantom (3D-cGAN vs. actual measurement), the average peak intracranial pressure error was 4.5%, and the average acoustic focus position error was 6.6 mm. These results demonstrate that the SGN system can predict the intracranial acoustic field according to transducer placement in real-time.
Collapse
Affiliation(s)
- Tae Young Park
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Heekyung Koh
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Wonhye Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - So Hee Park
- Department of Neurosurgery, Yeungnam University Medical Center, Daegu 42415, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul 04527, Republic of Korea
| | - Hyungmin Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
3
|
Park TY, Jeong JH, Chung YA, Yeo SH, Kim H. Application of subject-specific helmets for the study of human visuomotor behavior using transcranial focused ultrasound: a pilot study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107127. [PMID: 36126434 DOI: 10.1016/j.cmpb.2022.107127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE As a novel non-invasive human brain stimulation method, transcranial focused ultrasound (tFUS) is receiving growing attention due to its superior spatial specificity and depth penetrability. Since the focal point of tFUS needs to be fixated precisely to the target brain region during stimulation, a critical issue is to identify and maintain the accurate position and orientation of the tFUS transducer relative to the subject's head. This study aims to propose the entire framework of tFUS stimulation integrating the methods previously proposed by the authors for tFUS transducer configuration optimization and a subject-specific 3D-printed helmet, and to validate this complete setup in a human behavioral neuromodulation study. METHODS To find the optimal configuration of the tFUS transducer, a numerical method based on subject-specific tFUS beamlines simulation was used. Then, the subject-specific 3D-printed helmet has been applied to effectively secure the transducer at the estimated optimal configuration. To validate this tFUS framework, a common behavioral neuromodulation paradigm was chosen; the effect of the dorsolateral prefrontal cortex (DLPFC) stimulation on anti-saccade (AS) behavior. While human participants (n=2) were performing AS tasks, tFUS stimulations were randomly applied to the left DLPFC right after the fixation target disappeared. RESULTS The neuromodulation result strongly suggests that the cortical stimulation using the proposed tFUS setup is effective in significantly reducing the error rates of anti-saccades (about -10 %p for S1 and -16 %p for S2), whereas no significant effect was observed on their latencies. These observed behavioral effects are consistent with the previous results based on conventional brain stimulation or lesion studies. CONCLUSIONS The proposed subject-specific tFUS framework has been effectively used in human neuromodulation study. The result suggests that the tFUS stimulation targeted to the DLPFC can generate a neuromodulatory effect on AS behavior.
Collapse
Affiliation(s)
- Tae Young Park
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ji Hyeok Jeong
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | - Yong An Chung
- Incheon St. Mary's Hospital, The Catholic University of Korea, Republic of Korea
| | - Sang Hoon Yeo
- School of Sport, Exercise & Rehabilitation Sciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | - Hyungmin Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
4
|
Park TY, Kim HJ, Park SH, Chang WS, Kim H, Yoon K. Differential evolution method to find optimal location of a single-element transducer for transcranial focused ultrasound therapy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 219:106777. [PMID: 35397411 DOI: 10.1016/j.cmpb.2022.106777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Focused ultrasound (FUS) has been receiving growing attention as a noninvasive brain stimulation tool because of its superior spatial specificity and depth penetrability. However, the large mismatch of acoustic properties between the skull and water can disrupt and shift the acoustic focus in the brain. In this paper, we present a numerical method to find the optimal location of a single-element FUS transducer, which creates focus on the target region. METHODS The score function, representing the superposition of acoustic waves according to the relative phase difference and transmissibility, was defined based on time-reversal invariance of acoustic waves and depending on the spatial location of the transducer. The optimal location of the transducer was then determined using a differential evolution algorithm. To assess the proposed method, we conducted a forward simulation and compared the resulting focal location to the desired target point. We also performed experimental validation by measuring the acoustic pressure field through an ex vivo human skull in a water tank. RESULTS The numerical results indicated that the score function had a positive proportional relationship with the acoustic pressure at the target. Moreover, for the optimized transducer location, both the numerical and experimental results showed that the normalized acoustic pressure at the target was higher than 0.9. CONCLUSIONS In this study, we developed an optimization method to place a single-element transducer that effectively transmits acoustic energy to the targeted region in the brain. Our numerical and experimental results demonstrate that the proposed method can provide an optimal transducer location for safe and efficient FUS treatment.
Collapse
Affiliation(s)
- Tae Young Park
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Hyo-Jin Kim
- Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - So Hui Park
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul 04527, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul 04527, Republic of Korea
| | - Hyungmin Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Yu K, Niu X, He B. Neuromodulation Management of Chronic Neuropathic Pain in The Central Nervous system. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1908999. [PMID: 34335132 PMCID: PMC8323399 DOI: 10.1002/adfm.201908999] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Neuromodulation is becoming one of the clinical tools for treating chronic neuropathic pain by transmitting controlled physical energy to the pre-identified neural targets in the central nervous system. Its nature of drug-free, non-addictive and improved targeting have attracted increasing attention among neuroscience research and clinical practices. This article provides a brief overview of the neuropathic pain and pharmacological routines for treatment, summarizes both the invasive and non-invasive neuromodulation modalities for pain management, and highlights an emerging brain stimulation technology, transcranial focused ultrasound (tFUS) with a focus on ultrasound transducer devices and the achieved neuromodulation effects and applications on pain management. Practical considerations of spatial guidance for tFUS are discussed for clinical applications. The safety of transcranial ultrasound neuromodulation and its future prospectives on pain management are also discussed.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University
| |
Collapse
|
6
|
Park TY, Pahk KJ, Kim H. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 179:104982. [PMID: 31443869 DOI: 10.1016/j.cmpb.2019.104982] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Transcranial focused ultrasound (tFUS) is a promising neuromodulation technique because of its non-invasiveness and high spatial resolution (within millimeter scale). However, the presence of the skull can lead to disrupting and shifting the acoustic focus in the brain. In this study, we propose a computationally efficient way to determine the optimal position of a single-element focused ultrasound transducer which can effectively deliver acoustic energy to the brain target. We hypothesized that the placement of a single element transducer with the lowest average reflection coefficient would be the optimal position. METHODS The reflection coefficient is defined by the ratio of the amplitude of the reflected wave to the incident wave. To calculate the reflection coefficient, we assumed ultrasound waves as straight lines (beam lines). At each beam line, the reflection coefficient was calculated from the incidence angle at the skull interface (outer/inner skull surfaces). The average reflection coefficient (ARC) was calculated at each possible placement of the transducer using a custom-built software. For comparison purposes, acoustic simulations (k-Wave MATLAB toolbox) which numerically solved the linear wave equation were performed with the same transducer positions used in the ARC calculation. In addition, the experimental validation of our proposed method was also performed by measuring acoustic wave propagation through the calvaria skull phantom in water. The accuracy of our method was defined as the distance between the two optimal transducer placements which were determined from the acoustic simulations and from the ARC method. RESULT Simulated acoustic pressure distribution corresponding to each ARC showed an inverse relationship with peak acoustic pressures produced in the brain. In comparison to the acoustic simulations, the accuracy of our method was 5.07 ± 4.27 mm when targeting the cortical region in the brain. The computing time of ARC calculations were 0.08% of the time required for acoustic pressure simulations. CONCLUSION We calculated the ARC to find the optimal position of the tFUS transducer used in the present study. The optimal placement of the transducer was found when the ARC was the lowest. Our numerical and experimental results showed that the proposed ARC method can effectively be used to find the optimal position of a single-element tFUS transducer for targeting the cortex region of the brain in a computationally inexpensive way.
Collapse
Affiliation(s)
- Tae Young Park
- Center for Bionics, Biomedical Research Institute, Korea Institute Science and Technology (KIST), 5, Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 5, Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ki Joo Pahk
- Center for Bionics, Biomedical Research Institute, Korea Institute Science and Technology (KIST), 5, Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyungmin Kim
- Center for Bionics, Biomedical Research Institute, Korea Institute Science and Technology (KIST), 5, Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, 5, Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|