1
|
Magat J, Yon M, Bihan-Poudec Y, Ozenne V. A groupwise registration and tractography framework for cardiac myofiber architecture description by diffusion MRI: An application to the ventricular junctions. PLoS One 2022; 17:e0271279. [PMID: 35849598 PMCID: PMC9292118 DOI: 10.1371/journal.pone.0271279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background Knowledge of the normal myocardial–myocyte orientation could theoretically allow the definition of relevant quantitative biomarkers in clinical routine to diagnose heart pathologies. A whole heart diffusion tensor template representative of the global myofiber organization over species is therefore crucial for comparisons across populations. In this study, we developed a groupwise registration and tractography framework to resolve the global myofiber arrangement of large mammalian sheep hearts. To demonstrate the potential application of the proposed method, a novel description of sub-regions in the intraventricular septum is presented. Methods Three explanted sheep (ovine) hearts (size ~12×8×6 cm3, heart weight ~ 150 g) were perfused with contrast agent and fixative and imaged in a 9.4T magnet. A group-wise registration of high-resolution anatomical and diffusion-weighted images were performed to generate anatomical and diffusion tensor templates. Diffusion tensor metrics (eigenvalues, eigenvectors, fractional anisotropy …) were computed to provide a quantitative and spatially-resolved analysis of cardiac microstructure. Then tractography was performed using deterministic and probabilistic algorithms and used for different purposes: i) Visualization of myofiber architecture, ii) Segmentation of sub-area depicting the same fiber organization, iii) Seeding and Tract Editing. Finally, dissection was performed to confirm the existence of macroscopic structures identified in the diffusion tensor template. Results The template creation takes advantage of high-resolution anatomical and diffusion-weighted images obtained at an isotropic resolution of 150 μm and 600 μm respectively, covering ventricles and atria and providing information on the normal myocardial architecture. The diffusion metric distributions from the template were found close to the one of the individual samples validating the registration procedure. Small new sub-regions exhibiting spatially sharp variations in fiber orientation close to the junctions of the septum and ventricles were identified. Each substructure was defined and represented using streamlines. The existence of a fiber-bundles in the posterior junction was validated by anatomical dissection. A complex structural organization of the anterior junction in comparison to the posterior junction was evidenced by the high-resolution acquisition. Conclusions A new framework combining cardiac template generation and tractography was applied on the whole sheep heart. The framework can be used for anatomical investigation, characterization of microstructure and visualization of myofiber orientation across samples. Finally, a novel description of the ventricular junction in large mammalian sheep hearts was proposed.
Collapse
Affiliation(s)
- Julie Magat
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Maxime Yon
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Yann Bihan-Poudec
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, Bron, France
| | - Valéry Ozenne
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Foundation Bordeaux Université, Bordeaux, France
- Centre de recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
2
|
Rodriguez Padilla J, Petras A, Magat J, Bayer J, Bihan-Poudec Y, El-Hamrani D, Ramlugun G, Neic A, Augustin C, Vaillant F, Constantin M, Benoist D, Pourtau L, Dubes V, Rogier J, Labrousse L, Bernus O, Quesson B, Haissaguerre M, Gsell M, Plank G, Ozenne V, Vigmond E. Impact of Intraventricular Septal Fiber Orientation on Cardiac Electromechanical Function. Am J Physiol Heart Circ Physiol 2022; 322:H936-H952. [PMID: 35302879 PMCID: PMC9109800 DOI: 10.1152/ajpheart.00050.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fiber direction is an important factor determining the propagation of electrical activity, as well as the development of mechanical force. In this article, we imaged the ventricles of several species with special attention to the intraventricular septum to determine the functional consequences of septal fiber organization. First, we identified a dual-layer organization of the fiber orientation in the intraventricular septum of ex vivo sheep hearts using diffusion tensor imaging at high field MRI. To expand the scope of the results, we investigated the presence of a similar fiber organization in five mammalian species (rat, canine, pig, sheep, and human) and highlighted the continuity of the layer with the moderator band in large mammalian species. We implemented the measured septal fiber fields in three-dimensional electromechanical computer models to assess the impact of the fiber orientation. The downward fibers produced a diamond activation pattern superficially in the right ventricle. Electromechanically, there was very little change in pressure volume loops although the stress distribution was altered. In conclusion, we clarified that the right ventricular septum has a downwardly directed superficial layer in larger mammalian species, which can have modest effects on stress distribution. NEW & NOTEWORTHY A dual-layer organization of the fiber orientation in the intraventricular septum was identified in ex vivo hearts of large mammals. The RV septum has a downwardly directed superficial layer that is continuous with the moderator band. Electrically, it produced a diamond activation pattern. Electromechanically, little change in pressure volume loops were noticed but stress distribution was altered. Fiber distribution derived from diffusion tensor imaging should be considered for an accurate strain and stress analysis.
Collapse
Affiliation(s)
| | - Argyrios Petras
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
| | - Julie Magat
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Jason Bayer
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| | - Yann Bihan-Poudec
- Centre de Neuroscience Cognitive, CNRS UMR 5229, Université Claude Bernard Lyon I, France
| | - Dounia El-Hamrani
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Girish Ramlugun
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Aurel Neic
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Christoph Augustin
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Fanny Vaillant
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Marion Constantin
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - David Benoist
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Line Pourtau
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Virginie Dubes
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | | | - Olivier Bernus
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Bruno Quesson
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | - Matthias Gsell
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Valéry Ozenne
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Edward Vigmond
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| |
Collapse
|
3
|
Stimm J, Nordsletten DA, Jilberto J, Miller R, Berberoğlu E, Kozerke S, Stoeck CT. Personalization of biomechanical simulations of the left ventricle by in-vivo cardiac DTI data: Impact of fiber interpolation methods. Front Physiol 2022; 13:1042537. [PMID: 36518106 PMCID: PMC9742433 DOI: 10.3389/fphys.2022.1042537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Simulations of cardiac electrophysiology and mechanics have been reported to be sensitive to the microstructural anisotropy of the myocardium. Consequently, a personalized representation of cardiac microstructure is a crucial component of accurate, personalized cardiac biomechanical models. In-vivo cardiac Diffusion Tensor Imaging (cDTI) is a non-invasive magnetic resonance imaging technique capable of probing the heart's microstructure. Being a rather novel technique, issues such as low resolution, signal-to noise ratio, and spatial coverage are currently limiting factors. We outline four interpolation techniques with varying degrees of data fidelity, different amounts of smoothing strength, and varying representation error to bridge the gap between the sparse in-vivo data and the model, requiring a 3D representation of microstructure across the myocardium. We provide a workflow to incorporate in-vivo myofiber orientation into a left ventricular model and demonstrate that personalized modelling based on fiber orientations from in-vivo cDTI data is feasible. The interpolation error is correlated with a trend in personalized parameters and simulated physiological parameters, strains, and ventricular twist. This trend in simulation results is consistent across material parameter settings and therefore corresponds to a bias introduced by the interpolation method. This study suggests that using a tensor interpolation approach to personalize microstructure with in-vivo cDTI data, reduces the fiber uncertainty and thereby the bias in the simulation results.
Collapse
Affiliation(s)
- Johanna Stimm
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David A Nordsletten
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Javiera Jilberto
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Renee Miller
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ezgi Berberoğlu
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Division of Surgical Research, University Hospital Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Stimm J, Buoso S, Berberoğlu E, Kozerke S, Genet M, Stoeck CT. A 3D personalized cardiac myocyte aggregate orientation model using MRI data-driven low-rank basis functions. Med Image Anal 2021; 71:102064. [PMID: 33957560 DOI: 10.1016/j.media.2021.102064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/01/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Cardiac myocyte aggregate orientation has a strong impact on cardiac electrophysiology and mechanics. Studying the link between structural characteristics, strain, and stresses over the cardiac cycle and cardiac function requires a full volumetric representation of the microstructure. In this work, we exploit the structural similarity across hearts to extract a low-rank representation of predominant myocyte orientation in the left ventricle from high-resolution magnetic resonance ex-vivo cardiac diffusion tensor imaging (cDTI) in porcine hearts. We compared two reduction methods, Proper Generalized Decomposition combined with Singular Value Decomposition and Proper Orthogonal Decomposition. We demonstrate the existence of a general set of basis functions of aggregated myocyte orientation which defines a data-driven, personalizable, parametric model featuring higher flexibility than existing atlas and rule-based approaches. A more detailed representation of microstructure matching the available patient data can improve the accuracy of personalized computational models. Additionally, we approximate the myocyte orientation of one ex-vivo human heart and demonstrate the feasibility of transferring the basis functions to humans.
Collapse
Affiliation(s)
- Johanna Stimm
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Stefano Buoso
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Ezgi Berberoğlu
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Martin Genet
- Laboratoire de Mécanique des Solides, École Polytechnique, Palaiseau, France; M3DISIM team, Inria / Université Paris-Saclay, Palaiseau, France; C.N.R.S./Université Paris-Saclay, Palaiseau, France
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|