1
|
Jiang JY, Xue D, Gong JS, Zheng QX, Zhang YS, Su C, Xu ZH, Shi JS. A comprehensive review on microbial hyaluronan-degrading enzymes: from virulence factors to biotechnological tools. BIORESOUR BIOPROCESS 2024; 11:114. [PMID: 39722064 DOI: 10.1186/s40643-024-00832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Hyaluronan (HA), a natural high molecular weight polysaccharide, has extensive applications in cosmetology and medical treatment. Hyaluronan-degrading enzymes (Hyals) act as molecular scissors that cleave HA by breaking the glucosidic linkage. Hyals are present in diverse organisms, including vertebrates, invertebrates and microorganisms, and play momentous roles in biological processes. In recent years, microbial Hyals (mHyals) have gained considerable attention for their exceptional performance in the production and processing of HA. Moreover, the applications of mHyals have been greatly extended to various biomedical fields. To explore the potential applications of mHyals, a thorough comprehension is imperative. In this context, this review systematically summarizes the sources, structures, mechanisms and enzymatic properties of mHyals and discusses their biological functions in host invasion, disease development, and regulation of intestinal flora. Furthermore, versatile applications inspired by their biological functions in medicine development, molecular biology, and industrial biotechnology are comprehensively reviewed. Finally, prospects are presented to emphasize the importance of exploration, expression and characterization of mHyals and the necessity of excavating their potential in biotechnological fields.
Collapse
Affiliation(s)
- Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Dai Xue
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China.
| | - Qin-Xin Zheng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Yue-Sheng Zhang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs, Lyngby, Denmark
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China
| | - Zheng-Hong Xu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
2
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
3
|
Wang ZC, Wu X, Liang K, Wu TH. Exploring the Potential of DNA Computing for Complex Big Data Problems: A Case Study on the Traveling Car Renter Problem. IEEE Trans Nanobioscience 2024; 23:391-402. [PMID: 38709614 DOI: 10.1109/tnb.2024.3396142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The traveling car renter problem (TCRP) is a variant of the Traveling Salesman Problem (TSP) wherein the salesman utilizes rented cars for travel. The primary objective of this problem is to identify a solution that minimizes the cumulative operating costs. Given its classification as a non-deterministic polynomial (NP) problem, traditional computers are not proficient in effectively resolving it. Conversely, DNA computing exhibits unparalleled advantages when confronted with NP-hard problems. This paper presents a DNA algorithm, based on the Adleman-Lipton model, as a proposed approach to address TCRP. The solution for TCRP can be acquired by following a series of fundamental steps, including coding, interaction, and extraction. The time computing complexity of the proposed DNA algorithm is O(n2m) for TCRP with n cities and m types of cars. By conducting simulation experiments, the solutions for certain instances of TCRP are computed and compared to those obtained by alternative algorithms. The proposed algorithm further illustrates the potential of DNA computing, as a form of parallel computing, to address more intricate large-scale problems.
Collapse
|
4
|
Maji D, Miguela V, Cameron AD, Campbell DA, Sasset L, Yao X, Thompson AT, Sussman C, Yang D, Miller R, Drozdz MM, Liberatore RA. Enhancing In Vivo Electroporation Efficiency through Hyaluronidase: Insights into Plasmid Distribution and Optimization Strategies. Pharmaceutics 2024; 16:547. [PMID: 38675208 PMCID: PMC11053992 DOI: 10.3390/pharmaceutics16040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Electroporation (EP) stands out as a promising non-viral plasmid delivery strategy, although achieving optimal transfection efficiency in vivo remains a challenge. A noteworthy advancement in the field of in vivo EP is the application of hyaluronidase, an enzyme with the capacity to degrade hyaluronic acid in the extracellular matrix, which thereby enhances DNA transfer efficiency by 2- to 3-fold. This paper focuses on elucidating the mechanism of hyaluronidase's impact on transfection efficiency. We demonstrate that hyaluronidase promotes a more uniform distribution of plasmid DNA (pDNA) within skeletal muscle. Additionally, our study investigates the effect of the timing of hyaluronidase pretreatment on EP efficiency by including time intervals of 0, 5, and 30 min between hyaluronidase treatment and the application of pulses. Serum levels of the pDNA-encoded transgene reveal a minimal influence of the hyaluronidase pretreatment time on the final serum protein levels following delivery in both mice and rabbit models. Leveraging bioimpedance measurements, we capture morphological changes in muscle induced by hyaluronidase treatment, which result in a varied pDNA distribution. Subsequently, these findings are employed to optimize EP electrical parameters following hyaluronidase treatment in animal models. This paper offers novel insights into the potential of hyaluronidase in enhancing the effectiveness of in vivo EP, as well as guides optimized electroporation strategies following hyaluronidase use.
Collapse
Affiliation(s)
- Debnath Maji
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | - Verónica Miguela
- RenBio Inc., Long Island City, New York, NY 11101, USA
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas—Universidad Miguel Hernández de Elche, Sant Joan d’Alacant, 03550 Alicante, Spain
| | | | | | - Linda Sasset
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | - Xin Yao
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | | | | | - David Yang
- RenBio Inc., Long Island City, New York, NY 11101, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert Miller
- RenBio Inc., Long Island City, New York, NY 11101, USA
| | | | | |
Collapse
|
5
|
Spugnini EP, Condello M, Crispi S, Baldi A. Electroporation in Translational Medicine: From Veterinary Experience to Human Oncology. Cancers (Basel) 2024; 16:1067. [PMID: 38473422 DOI: 10.3390/cancers16051067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Electroporation (EP) is a broadly accepted procedure that, through the application of electric pulses with appropriate amplitudes and waveforms, promotes the delivery of anticancer molecules in various oncology therapies. EP considerably boosts the absorptivity of targeted cells to anticancer molecules of different natures, thus upgrading their effectiveness. Its use in veterinary oncology has been widely explored, and some applications, such as electrochemotherapy (ECT), are currently approved as first-line treatments for several neoplastic conditions. Other applications include irreversible electroporation and EP-based cancer vaccines. In human oncology, EP is still mostly restricted to therapies for cutaneous tumors and the palliation of cutaneous and visceral metastases of malignant tumors. Fields where veterinary experience could help smooth the clinical transition to humans include intraoperative EP, interventional medicine and cancer vaccines. This article recapitulates the state of the art of EP in veterinary and human oncology, recounting the most relevant results to date.
Collapse
Affiliation(s)
| | | | - Stefania Crispi
- Institute of Biosciences and BioResources-UOS Naples CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Alfonso Baldi
- Biopulse Srl, 00144 Rome, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Campania University "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
6
|
da Luz JCDS, Antunes F, Clavijo-Salomon MA, Signori E, Tessarollo NG, Strauss BE. Clinical Applications and Immunological Aspects of Electroporation-Based Therapies. Vaccines (Basel) 2021; 9:727. [PMID: 34358144 PMCID: PMC8310106 DOI: 10.3390/vaccines9070727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Reversible electropermeabilization (RE) is an ultrastructural phenomenon that transiently increases the permeability of the cell membrane upon application of electrical pulses. The technique was described in 1972 by Neumann and Rosenheck and is currently used in a variety of applications, from medicine to food processing. In oncology, RE is applied for the intracellular transport of chemotherapeutic drugs as well as the delivery of genetic material in gene therapies and vaccinations. This review summarizes the physical changes of the membrane, the particularities of bleomycin, and the immunological aspects involved in electrochemotherapy and gene electrotransfer, two important EP-based cancer therapies in human and veterinary oncology.
Collapse
Affiliation(s)
- Jean Carlos dos Santos da Luz
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| | - Fernanda Antunes
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| | | | - Emanuela Signori
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy;
| | - Nayara Gusmão Tessarollo
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| | - Bryan E. Strauss
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| |
Collapse
|
7
|
Maglietti F, Tellado M, De Robertis M, Michinski S, Fernández J, Signori E, Marshall G. Electroporation as the Immunotherapy Strategy for Cancer in Veterinary Medicine: State of the Art in Latin America. Vaccines (Basel) 2020; 8:E537. [PMID: 32957424 PMCID: PMC7564659 DOI: 10.3390/vaccines8030537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Electroporation is a technology that increases cell membrane permeability by the application of electric pulses. Electrochemotherapy (ECT), the best-known application of electroporation, is a very effective local treatment for tumors of any histology in human and veterinary medicine. It induces a local yet robust immune response that is responsible for its high effectiveness. Gene electrotransfer (GET), used in research to produce a systemic immune response against cancer, is another electroporation-based treatment that is very appealing for its effectiveness, low cost, and simplicity. In this review, we present the immune effect of electroporation-based treatments and analyze the results of the vast majority of the published papers related to immune response enhancement by gene electrotransfer in companion animals with spontaneous tumors. In addition, we present a brief history of the initial steps and the state of the art of the electroporation-based treatments in Latin America. They have the potential to become an essential form of immunotherapy in the region. This review gives insight into the subject and helps to choose promising research lines for future work; it also helps to select the adequate treatment parameters for performing a successful application of this technology.
Collapse
Affiliation(s)
- Felipe Maglietti
- Instituto Universitario del Hospital Italiano de Buenos Aires, CONICET, Buenos Aires 1199, Argentina
| | - Matías Tellado
- VetOncologia, Veterinary Oncology Clinic, Buenos Aires 1408, Argentina; (M.T.); (J.F.)
| | - Mariangela De Robertis
- CNR-Institute of Biomembrane, Bioenergetics, and Molecular Biotechnology, 70126 Bari, Italy;
- Department of Bioscience, Biotechnology, and Biopharmaceutics, University of Bari, 70126 Bari, Italy
| | - Sebastián Michinski
- Instituto de Física del Plasma, DF, FCEyN, UBA-CONICET, Buenos Aires 1428, Argentina; (S.M.); (G.M.)
| | - Juan Fernández
- VetOncologia, Veterinary Oncology Clinic, Buenos Aires 1408, Argentina; (M.T.); (J.F.)
| | - Emanuela Signori
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, CNR, 00133 Rome, Italy;
| | - Guillermo Marshall
- Instituto de Física del Plasma, DF, FCEyN, UBA-CONICET, Buenos Aires 1428, Argentina; (S.M.); (G.M.)
| |
Collapse
|
8
|
Definition of a Novel Plasmid-Based Gene Transfection Protocol of Mammalian Skeletal Muscles by Means of In Vivo Electroporation. Int J Mol Sci 2020; 21:ijms21186494. [PMID: 32899477 PMCID: PMC7555604 DOI: 10.3390/ijms21186494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Abstract
We describe an original electroporation protocol for in vivo plasmid DNA transfection. The right hind limbs of C57 mice are exposed to a specifically designed train of permeabilizing electric pulses by transcutaneous application of tailored needle electrodes, immediately after the injection of pEGFP-C1 plasmid encoding GFP (Green Fluorescente Protein). The electroporated rodents show a greater GFP expression than the controls at three different time points (4, 10, and 15 days). The electroporated muscles display only mild interstitial myositis, with a significant increase in inflammatory cell infiltrates. Finally, mild gait abnormalities are registered in electroporated mice only in the first 48 h after the treatment. This protocol has proven to be highly efficient in terms of expression levels of the construct, is easy to apply since it does not require surgical exposure of the muscle and is well tolerated by the animals because it does not cause evident morphological and functional damage to the electroporated muscle.
Collapse
|