1
|
Wang C, Felli E, Fallowfield JA, Dietrich CF, Rockey D, Hennig J, Teng GJ, Gracia-Sancho J, Qi X. Vasomics of the liver. Gut 2025:gutjnl-2024-334133. [PMID: 40044498 DOI: 10.1136/gutjnl-2024-334133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Chronic liver disease is a cluster of disorders associated with complex haemodynamic alterations, which is characterised by structural and functional disruptions of the intrahepatic and extrahepatic vasculature. 'Vasomics' is an emerging omics discipline that comprehensively analyses and models the vascular system by integrating pathophysiology of disease, biomechanics, medical imaging, computational science and artificial intelligence. Vasomics is further typified by its multidimensional, multiscale and high-throughput nature, which depends on the rapid and robust extraction of well-defined vascular phenotypes with clear clinical and/or biological interpretability. By leveraging multimodality medical imaging techniques, vascular functional assessments, pathological image evaluation, and related computational methods, integrated vasomics provides a deeper understanding of the associations between the vascular system and disease. This in turn reveals the crucial role of the vascular system in disease occurrence, progression and treatment responses, thereby supporting precision medicine approaches. Pathological vascular features have already demonstrated their key role in different clinical scenarios. Despite this, vasomics is yet to be widely recognised. Therefore, we furnished a comprehensive definition of vasomics providing a classification of existing hepatic vascular phenotypes into the following categories: anatomical, biomechanical, biochemical, pathophysiological and composite.
Collapse
Affiliation(s)
- Chengyan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
- Shanghai Pudong Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | | | | - Don Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jürgen Hennig
- Department of Radiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Baden-Württemberg, Germany
| | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Liver Vascular Biology Lab, Liver Unit IDIBAPS, Hospital Clínic Barcelona-CIBEREHD, Barcelona, Spain
| | - Xiaolong Qi
- State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China
| |
Collapse
|
2
|
Yang L, Zhang Y, Wang T. Hemodynamic comparisons of different shunt positions and geometrical model simplification strategies in the simulation of transjugular intrahepatic portosystemic shunt (TIPS). Sci Rep 2024; 14:31486. [PMID: 39732832 PMCID: PMC11682052 DOI: 10.1038/s41598-024-82954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Transjugular intrahepatic portosystemic shunt (TIPS) is a widely used surgery for portal hypertensive patients, whose potential postoperative complications are closely related to the hemodynamic condition of the portal venous system. The selection of shunt position in the surgery may affect the postoperative hemodynamics; however, it is difficult for clinical studies to investigate the influence. Therefore, this study aims to employ the computational model simulating TIPS to compare the hemodynamic differences resulting from different shunt positions, and also to investigate the influences of different geometrical model simplification strategies used in the TIPS simulation. For this purpose, the clinical data of two representative patients were retrospectively collected, based on which, the computational hemodynamic models of the portal venous systems after TIPS were constructed, incorporating three typical shunt positions (i.e. shunt at the left/main/right portal vein) and three types of geometrical model simplification. Results showed that among the models with different shunt positions, the area-averaged flow velocity magnitudes in the shunts were very similar, while the model with shunt at the main portal vein showed the lowest postoperative portal pressure and the smallest area of high wall shear stress near the portal venous bifurcation. Among the models using different geometrical model simplification strategies, the simulated blood pressures at the main portal veins were very similar, but showed marked differences near the shunt inlets. Moreover, the area-averaged flow velocity magnitudes in the shunts were almost the same, while the velocity distributions differed a lot, leading to the different spatial distributions of wall shear stress near the portal venous bifurcations and shunt walls. These results on one hand suggested that placing the shunt at the main portal vein is more beneficial for the patient; on the other hand, they proved the feasibility of utilizing simplified model to save computational cost without losing the accuracy when the pressure at the main portal vein is mainly focused on. These findings would assist clinical decision-making and promote more accurate and efficient TIPS simulations.
Collapse
Affiliation(s)
- Liu Yang
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, No. 516 Jungong Road, Yangpu District, Shanghai, 200093, China
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yitao Zhang
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, No. 516 Jungong Road, Yangpu District, Shanghai, 200093, China
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Tianqi Wang
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, No. 516 Jungong Road, Yangpu District, Shanghai, 200093, China.
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
3
|
Xie C, Sun S, Huang H, Li X, Qu W, Song H. A hemodynamic study of the relationship between the left and right liver volumes and the blood flow distribution in portal vein branches. Med Phys 2024; 51:6501-6512. [PMID: 38843522 DOI: 10.1002/mp.17184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cirrhosis patients often exhibit clinical symptoms such as right liver atrophy, portal hypertension, spleen enlargement and increased blood supply, which exhibit considerable variation between the left and right liver sections. These differences are hypothesized to stem from disparities in blood flow within the left and right portal vein (PV) branches. However, rigorous quantitative evidence remains scarce. PURPOSE We mainly aim at quantitatively revealing the relationship between the blood flow rates of two PV branches and liver volumes, and providing quantitative evidence and theoretical support for the diagnosis and treatment of cirrhosis from the perspective of hemodynamics. METHODS Five cirrhotic patients and two healthy volunteers from Beijing Friendship Hospital are investigated. Their PV blood flow models are established based on computed tomography (CT) images and finite volume simulations. The volume of the left and right liver lobes are measured in 3-matic. The distributions of blood source in the PV branches are tracked by streamline analysis. The blood flow rates are quantitatively counted by integrating the blood source velocities. Linear analysis is performed to build the relationship between liver volumes and PV blood flow distributions. RESULTS Streamline analysis reveals significant differences in blood distribution between the left and right PV branches. The majority of blood from the superior mesenteric vein (SMV) flowed into the right portal vein (RPV), while most blood from the splenic vein (SV) entered the left portal vein (LPV). The main PV pressure drop linearly increases with the SV blood velocity for all PV structures of patients and healthy volunteers. The flow rate ratio QRPV/QLPV demonstrates an increase in tandem with the volume ratio VR/VL, exhibiting a linear correlation with the Pearson correlation coefficient being 0.93. CONCLUSION The differences in the blood distributions are consistent with the clinicians' knowledge and validate our simulations. We demonstrated a linear increase in PV pressure with elevated SV blood velocity. Additionally, the volumes of the left and right hepatic lobes exhibited a positive correlation with blood flow rates in the corresponding PV branches.
Collapse
Affiliation(s)
- Chiyu Xie
- University of Science and Technology Beijing, Beijing, China
| | - Shengda Sun
- University of Science and Technology Beijing, Beijing, China
| | - Hao Huang
- Liver Transplantation Section, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofan Li
- University of Science and Technology Beijing, Beijing, China
| | - Wei Qu
- Liver Transplantation Section, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongqing Song
- University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
4
|
Song H, Li X, Huang H, Xie C, Qu W. Postoperative virtual pressure difference as a new index for the risk assessment of liver resection from biomechanical analysis. Comput Biol Med 2023; 157:106725. [PMID: 36913851 DOI: 10.1016/j.compbiomed.2023.106725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
In the realm of hepatectomy, traditional methods for postoperative risk assessment are limited in their ability to provide comprehensive and intuitive evaluations of donor risk. To address this issue, there is a need for the development of more multifaceted indicators to assess the risk in hepatectomy donors. In an effort to improve postoperative risk assessments, a computational fluid dynamics (CFD) model was developed to analyze blood flow properties, such as streamlines, vorticity, and pressure, in 10 eligible donors. By comparing the correlation between vorticity, maximum velocity, postoperative virtual pressure difference and TB, a novel index - postoperative virtual pressure difference - was proposed from a biomechanical perspective. This index demonstrated a high correlation (0.98) with total bilirubin values. Donors who underwent right liver lobe resections had greater pressure gradient values than those who underwent left liver lobe resected donors due to the denser streamlines and higher velocity and vorticity values of the former group. Compared with traditional medical methods, the biofluid dynamic analysis using CFD offers advantages in terms of accuracy, efficiency, and intuition.
Collapse
Affiliation(s)
- Hongqing Song
- University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaofan Li
- University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Huang
- Liver Transplantation Section, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Chiyu Xie
- University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Qu
- Liver Transplantation Section, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
5
|
Insight into microvascular adaptive alterations in the Glisson system of biliary atresia after Kasai portoenterostomy using X-ray phase-contrast CT. Eur Radiol 2022; 33:4082-4093. [PMID: 36576546 DOI: 10.1007/s00330-022-09364-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To investigate microvascular alterations in the Glisson system of biliary atresia (BA) patients after Kasai portoenterostomy (KP) using three-dimensional (3D) virtual histopathology based on X-ray phase-contrast CT (PCCT). METHODS Liver explants from BA patients were imaged using PCCT, and 32 subjects were included and divided into two groups: KP (n = 16) and non-KP (n = 16). Combined with histological analysis and 3D visualization technology, 3D virtual histopathological assessment of the biliary, arterial, and portal venous systems was performed. According to loop volume ratio, 3D spatial density, relative surface area, tortuosity, and other parameters, pathological changes of microvasculature in the Glisson system were investigated. RESULTS In the non-KP group, bile ducts mostly manifested as radial multifurcated hyperplasia and twisted into loops. In the KP group, the bile duct hyperplasia was less, and the loop volume ratio of bile ducts decreased by 13.89%. Simultaneously, the arterial and portal venous systems presented adaptive alterations in response to degrees of bile duct hyperplasia. Compared with the non-KP group, the 3D spatial density of arteries in the KP group decreased by 3.53%, and the relative surface area decreased from 0.088 ± 0.035 to 0.039 ± 0.015 (p < .01). Deformed portal branches gradually recovered after KP, with a 2.93% increase in 3D spatial density and a decrease in tortuosity from 1.17 ± 0.06 to 1.14 ± 0.04 (p < .01) compared to the non-KP group. CONCLUSION 3D virtual histopathology via PCCT clearly reveals the microvascular structures in the Glisson system of BA patients and provides key insights into the morphological mechanism of microvascular adaptation induced by biliary tract dredging after KP in BA disease. KEY POINTS • 3D virtual histopathology via X-ray phase-contrast computed tomography clearly presented the morphological structures and pathological changes of microvasculature in the Glisson system of biliary atresia patients. • The morphological alterations of microvasculature in the Glisson system followed the competitive occupancy mechanism in the process of biliary atresia.
Collapse
|
6
|
Qu W, Li X, Huang H, Xie C, Song H. Mechanisms of the ascites volume differences between patients receiving a left or right hemi-liver graft liver transplantation: From biofluidic analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107196. [PMID: 36367484 DOI: 10.1016/j.cmpb.2022.107196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Post-transplant refractory ascites (RA) is common in patients receiving living donor liver transplantation (LDLT) using a left hemi-liver graft than in those using a right hemi-liver graft. However, there is currently no clear mechanism explaining the effect of grafts on ascites drainage. The purpose of this study is to analyze the values of blood flow parameters in the portal vein under different grafts using computational fluid dynamics (CFD) to interpret the relationship between portal pressure values with ascites drainage. METHODS In this work, ascites drainage was counted in 30 patients who underwent left-sided liver transplantation and 26 patients who underwent right-sided liver transplantation. The portal vein flow models of the transplanted liver under different flow rates were established based on computed tomography (CT) images and finite element theory. Ascites drainage and blood flow parameters were qualitatively compared. RESULTS The results show that the ascites drained from patients who received LDLT with a left hemi-liver is three times as that with a right hemi-liver. The simulation results show that the coefficient of the pressure-velocity curve of the left-liver is 1.7 times of the right-liver under the same hydrodynamic conditions, which qualitatively agrees with the clinical data. Moreover, the streamline of the transplanted left liver shows more vortexes compared with the right liver, which is a major reason for the left liver's higher pressure value. CONCLUSION This clinical phenomenon is reproduced and comprehensively explained by the hemodynamic parameters of the portal vein. This work establishes the relationship between portal pressure values and floating water drainage, and offers a new way for physicians to predict postoperative risks intuitively.
Collapse
Affiliation(s)
- Wei Qu
- Liver Transplantation Section, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Tsinghua University, Beijing 100084, China
| | - Xiaofan Li
- University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Huang
- Liver Transplantation Section, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Chiyu Xie
- University of Science and Technology Beijing, Beijing 100083, China
| | - Hongqing Song
- University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|