1
|
Fernandes M, Sousa LC, António CC, Silva S, Pinto SIS. A review of computational methodologies to predict the fractional flow reserve in coronary arteries with stenosis. J Biomech 2025; 178:112299. [PMID: 39227297 DOI: 10.1016/j.jbiomech.2024.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Computational methodologies for predicting the fractional flow reserve (FFR) in coronary arteries with stenosis have gained significant attention due to their potential impact on healthcare outcomes. Coronary artery disease is a leading cause of mortality worldwide, prompting the need for accurate diagnostic and treatment approaches. The use of medical image-based anatomical vascular geometries in computational fluid dynamics (CFD) simulations to evaluate the hemodynamics has emerged as a promising tool in the medical field. This comprehensive review aims to explore the state-of-the-art computational methodologies focusing on the possible considerations. Key aspects include the rheology of blood, boundary conditions, fluid-structure interaction (FSI) between blood and the arterial wall, and multiscale modelling (MM) of stenosis. Through an in-depth analysis of the literature, the goal is to obtain an overview of the major achievements regarding non-invasive methods to compute FFR and to identify existing gaps and challenges that inform further advances in the field. This research has the major objective of improving the current diagnostic capabilities and enhancing patient care in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- M Fernandes
- Faculty of Engineering of the University of Porto, FEUP, Rua Dr. Roberto Frias, s/n, 4200 - 465 Porto, Portugal; Institute of Science and Innovation in Mechanical and Industrial Engineering, LAETA-INEGI, Rua Dr. Roberto Frias, 400, 4200 - 465 Porto, Portugal.
| | - L C Sousa
- Faculty of Engineering of the University of Porto, FEUP, Rua Dr. Roberto Frias, s/n, 4200 - 465 Porto, Portugal; Institute of Science and Innovation in Mechanical and Industrial Engineering, LAETA-INEGI, Rua Dr. Roberto Frias, 400, 4200 - 465 Porto, Portugal.
| | - C C António
- Faculty of Engineering of the University of Porto, FEUP, Rua Dr. Roberto Frias, s/n, 4200 - 465 Porto, Portugal; Institute of Science and Innovation in Mechanical and Industrial Engineering, LAETA-INEGI, Rua Dr. Roberto Frias, 400, 4200 - 465 Porto, Portugal.
| | - S Silva
- University of Aveiro, UA, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Institute of Electronics and Informatics Engineering of Aveiro, IEETA, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - S I S Pinto
- Faculty of Engineering of the University of Porto, FEUP, Rua Dr. Roberto Frias, s/n, 4200 - 465 Porto, Portugal; Institute of Science and Innovation in Mechanical and Industrial Engineering, LAETA-INEGI, Rua Dr. Roberto Frias, 400, 4200 - 465 Porto, Portugal.
| |
Collapse
|
2
|
Xi Y, Xu Y, Shu Z. Impact of hypertension on coronary artery plaques and FFR-CT in type 2 diabetes mellitus patients: evaluation utilizing artificial intelligence processed coronary computed tomography angiography. Front Artif Intell 2024; 7:1446640. [PMID: 39507325 PMCID: PMC11537896 DOI: 10.3389/frai.2024.1446640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study utilized artificial intelligence (AI) to quantify coronary computed tomography angiography (CCTA) images, aiming to compare plaque characteristics and CT-derived fractional flow reserve (FFR-CT) in type 2 diabetes mellitus (T2DM) patients with or without hypertension (HTN). Methods A retrospective analysis was conducted on 1,151 patients with suspected coronary artery disease who underwent CCTA at a single center. Patients were grouped into T2DM (n = 133), HTN (n = 442), T2DM (HTN+) (n = 256), and control (n = 320). AI assessed various CCTA parameters, including plaque components, high-risk plaques (HRPs), FFR-CT, severity of coronary stenosis using Coronary Artery Disease Reporting and Data System 2.0 (CAD-RADS 2.0), segment involvement score (SIS), and segment stenosis score (SSS). Statistical analysis compared these parameters among groups. Results The T2DM (HTN+) group had the highest plaque volume and length, SIS, SSS, and CAD-RADS 2.0 classification. In the T2DM group, 54.0% of the plaque volume was noncalcified and 46.0% was calcified, while in the HTN group, these values were 24.0 and 76.0%, respectively. The T2DM (HTN+) group had more calcified plaques (35.7% noncalcified, 64.3% calcified) than the T2DM group. The average necrotic core volume was 4.25 mm3 in the T2DM group and 5.23 mm3 in the T2DM (HTN+) group, with no significant difference (p > 0.05). HRPs were more prevalent in both T2DM and T2DM (HTN+) compared to HTN and control groups (p < 0.05). The T2DM (HTN+) group had a higher likelihood (26.1%) of FFR-CT ≤0.75 compared to the T2DM group (13.8%). FFR-CT ≤0.75 correlated with CAD-RADS 2.0 (OR = 7.986, 95% CI = 5.466-11.667, cutoff = 3, p < 0.001) and noncalcified plaque volume (OR = 1.006, 95% CI = 1.003-1.009, cutoff = 29.65 mm3, p < 0.001). HRPs were associated with HbA1c levels (OR = 1.631, 95% CI = 1.387-1.918). Conclusion AI analysis of CCTA identifies patterns in quantitative plaque characteristics and FFR-CT values. Comorbid HTN exacerbates partially calcified plaques, leading to more severe coronary artery stenosis in patients with T2DM. T2DM is associated with partially noncalcified plaques, whereas HTN is linked to partially calcified plaques.
Collapse
Affiliation(s)
| | | | - Zheng Shu
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Vardhan M, Tanade C, Chen SJ, Mahmood O, Chakravartti J, Jones WS, Kahn AM, Vemulapalli S, Patel M, Leopold JA, Randles A. Diagnostic Performance of Coronary Angiography Derived Computational Fractional Flow Reserve. J Am Heart Assoc 2024; 13:e029941. [PMID: 38904250 PMCID: PMC11255717 DOI: 10.1161/jaha.123.029941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Computational fluid dynamics can compute fractional flow reserve (FFR) accurately. However, existing models are limited by either the intravascular hemodynamic phenomarkers that can be captured or the fidelity of geometries that can be modeled. METHODS AND RESULTS This study aimed to validate a new coronary angiography-based FFR framework, FFRHARVEY, and examine intravascular hemodynamics to identify new biomarkers that could augment FFR in discerning unrevascularized patients requiring intervention. A 2-center cohort was used to examine diagnostic performance of FFRHARVEY compared with reference wire-based FFR (FFRINVASIVE). Additional biomarkers, longitudinal vorticity, velocity, and wall shear stress, were evaluated for their ability to augment FFR and indicate major adverse cardiac events. A total of 160 patients with 166 lesions were investigated. FFRHARVEY was compared with FFRINVASIVE by investigators blinded to the invasive FFR results with a per-stenosis area under the curve of 0.91, positive predictive value of 90.2%, negative predictive value of 89.6%, sensitivity of 79.3%, and specificity of 95.4%. The percentage ofdiscrepancy for continuous values of FFR was 6.63%. We identified a hemodynamic phenomarker, longitudinal vorticity, as a metric indicative of major adverse cardiac events in unrevascularized gray-zone cases. CONCLUSIONS FFRHARVEY had high performance (area under the curve: 0.91, positive predictive value: 90.2%, negative predictive value: 89.6%) compared with FFRINVASIVE. The proposed framework provides a robust and accurate way to compute a complete set of intravascular phenomarkers, in which longitudinal vorticity was specifically shown to differentiate vessels predisposed to major adverse cardiac events.
Collapse
Affiliation(s)
| | - Cyrus Tanade
- Department of BiomedicalDuke UniversityDurhamNCUSA
| | - S. James Chen
- Department of MedicineUniversity of ColoradoAuroraCOUSA
| | | | | | | | - Andrew M. Kahn
- Division of Cardiovascular MedicineUniversity of California San DiegoLa JollaCAUSA
| | | | - Manesh Patel
- Department of BiomedicalDuke UniversityDurhamNCUSA
| | - Jane A. Leopold
- Division of Cardiovascular MedicineBrigham and Women’s HospitalBostonMAUSA
| | | |
Collapse
|
4
|
Dobrić M, Furtula M, Tešić M, Timčić S, Borzanović D, Lazarević N, Lipovac M, Farkić M, Ilić I, Boljević D, Rakočević J, Aleksandrić S, Juričić S, Ostojić M, Bojić M. Current status and future perspectives of fractional flow reserve derived from invasive coronary angiography. Front Cardiovasc Med 2023; 10:1181803. [PMID: 37346287 PMCID: PMC10279845 DOI: 10.3389/fcvm.2023.1181803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Assessment of the functional significance of coronary artery stenosis using invasive measurement of fractional flow reserve (FFR) or non-hyperemic indices has been shown to be safe and effective in making clinical decisions on whether to perform percutaneous coronary intervention (PCI). Despite strong evidence from clinical trials, utilization of these techniques is still relatively low worldwide. This may be to some extent attributed to factors that are inherent to invasive measurements like prolongation of the procedure, side effects of drugs that induce hyperemia, additional steps that the operator should perform, the possibility to damage the vessel with the wire, and additional costs. During the last few years, there was a growing interest in the non-invasive assessment of coronary artery lesions, which may provide interventionalist with important physiological information regarding lesion severity and overcome some of the limitations. Several dedicated software solutions are available on the market that could provide an estimation of FFR using 3D reconstruction of the interrogated vessel derived from two separated angiographic projections taken during diagnostic coronary angiography. Furthermore, some of them use data about aortic pressure and frame count to more accurately calculate pressure drop (and FFR). The ideal non-invasive system should be integrated into the workflow of the cath lab and performed online (during the diagnostic procedure), thereby not prolonging procedural time significantly, and giving the operator additional information like vessel size, lesion length, and possible post-PCI FFR value. Following the development of these technologies, they were all evaluated in clinical trials where good correlation and agreement with invasive FFR (considered the gold standard) were demonstrated. Currently, only one trial (FAVOR III China) with clinical outcomes was completed and demonstrated that QFR-guided PCI may provide better results at 1-year follow-up as compared to the angiography-guided approach. We are awaiting the results of a few other trials with clinical outcomes that test the performance of these indices in guiding PCI against either FFR or angiography-based approach, in various clinical settings. Herein we will present an overview of the currently available data, a critical review of the major clinical trials, and further directions of development for the five most widely available non-invasive indices: QFR, vFFR, FFRangio, caFFR, and AccuFFRangio.
Collapse
Affiliation(s)
- Milan Dobrić
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Matija Furtula
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Milorad Tešić
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
- Cardiology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Stefan Timčić
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Dušan Borzanović
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Nikola Lazarević
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Mirko Lipovac
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Mihajlo Farkić
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Ivan Ilić
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Darko Boljević
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| | - Jelena Rakočević
- Institute of Histology and Embryology “Aleksandar Đ. Kostić”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Srđan Aleksandrić
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
- Cardiology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Stefan Juričić
- Cardiology Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Miodrag Ostojić
- University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Milovan Bojić
- Cardiology Clinic, Institute for Cardiovascular Diseases “Dedinje”, Belgrade, Serbia
| |
Collapse
|
5
|
Zhou J, Onuma Y, Garg S, Kotoku N, Kageyama S, Masuda S, Ninomiya K, Huo Y, Reiber JHC, Tu S, Piek JJ, Escaned J, Perera D, Bourantas C, Yan H, Serruys PW. Angiography derived assessment of the coronary microcirculation: is it ready for prime time? Expert Rev Cardiovasc Ther 2022; 20:549-566. [PMID: 35899781 DOI: 10.1080/14779072.2022.2098117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Non-obstructive coronary arteries (NOCA) are present in 39.7% to 62.4% of patients who undergo elective angiography. Coronary microcirculation (<400 µm) is not visible on angiography therefore functional assessment, invasive or non-invasive plays a prior role to help provide a more personalized diagnosis of angina. AREA COVERED In this review, we revise the pathophysiology, clinical importance and invasive assessment of the coronary microcirculation, and discuss angiography-derived indices of microvascular resistance. A comprehensive literature review over four decades is also undertaken. EXPERT OPINION The coronary microvasculature plays an important role in flow autoregulation and metabolic regulation. Invasive assessment of microvascular resistance is a validated modality with independent prognostic value, nevertheless, its routine application is hampered by the requirement of intravascular instrumentation and hyperaemic agents. The angiography-derived index of microvascular resistance has emerged as a promising surrogate in pilot studies, however, more data are needed to validate and compare the diagnostic and prognostic accuracy of different equations as well as to illustrate the relationship between angiography-derived parameters for epicardial coronary arteries and those for the microvasculature.
Collapse
Affiliation(s)
- Jinying Zhou
- National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China.,Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Scot Garg
- Department of CardiologyRoyal Blackburn Hospital, Blackburn, United Kingdom
| | - Nozomi Kotoku
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Shigetaka Kageyama
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Shinichiro Masuda
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Kai Ninomiya
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Yunlong Huo
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China; Department of Cardiology, Peking University First Hospital, Beijing, China; Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Johan H C Reiber
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Shengxian Tu
- School of Biomedical Engineering,Biomedical Instrument Institute Shanghai Jiao Tong University, Shanghai, China
| | - Jan J Piek
- Department of Cardiology, Academic Medical Center of Amsterdam, Amsterdam, The Netherlands
| | - Javier Escaned
- Complutense University of Madrid Hospital Clinico San Carlos IDISCC, Madrid, Spain
| | - Divaka Perera
- Cardiovascular Division, King's College London, London, UK
| | - Christos Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK; Institute of Cardiovascular Sciences, University College London, London, UK
| | - Hongbing Yan
- Chinese Academy of Medical Sciences, Shenzhen, China; Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital,, Beijing, China
| | | |
Collapse
|