1
|
Li G, Cao C, Fu H, Li X, Gao X. Modeling Functional Brain Networks for ADHD via Spatial Preservation-Based Neural Architecture Search. IEEE J Biomed Health Inform 2024; 28:6854-6864. [PMID: 39167518 DOI: 10.1109/jbhi.2024.3447010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Modeling functional brain networks (FBNs) for attention deficit hyperactivity disorder (ADHD) has sparked significant interest since the abnormal functional connectivity is discovered in certain functional magnetic resonance imaging (fMRI)-based brain regions compared to typical developmental control (TC) individuals. However, existing models for modeling FBNs generally use dimensionality reduction techniques to process the high dimensional input data, which results in confusion and an inaccurate representation of voxel interactions between spatially close brain regions, causing misdiagnosis of the disease. To address these issues, we propose a spatial preservation-based neural architecture search (SP-NAS) for FBNs modeling in ADHD. The main work includes three-fold: 1) A spatial preservation module is designed to embed original spatial information into dimensionality reduction data, addressing the challenge of a large number of parameters in the original data and mitigating disease misdiagnosis resulting from voxel confusion between different brain regions caused by dimensionality reduction. 2) A search space using more suitable search operations is constructed to efficiently extract spatial-temporal interaction characteristics of fMRI data in ADHD while narrowing the search space. 3) Cross-regional association differences between ADHD and TC groups are explored for ADHD auxiliary diagnosis since the abnormal activation regions of ADHD relative to TC on the brain regions and the abnormal connectivity between the lesion brain regions are identified. Model validation results on the ADHD-200 dataset show that the FBNs obtained from SP-NAS not only achieve competitive results in ADHD diagnosis but also reveal abnormal connections in the lesion regions of ADHD consistent with clinical diagnosis.
Collapse
|
2
|
Bi XA, Yang Z, Huang Y, Xing Z, Xu L, Wu Z, Liu Z, Li X, Liu T. CE-GAN: Community Evolutionary Generative Adversarial Network for Alzheimer's Disease Risk Prediction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3663-3675. [PMID: 38587958 DOI: 10.1109/tmi.2024.3385756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In the studies of neurodegenerative diseases such as Alzheimer's Disease (AD), researchers often focus on the associations among multi-omics pathogeny based on imaging genetics data. However, current studies overlook the communities in brain networks, leading to inaccurate models of disease development. This paper explores the developmental patterns of AD from the perspective of community evolution. We first establish a mathematical model to describe functional degeneration in the brain as the community evolution driven by entropy information propagation. Next, we propose an interpretable Community Evolutionary Generative Adversarial Network (CE-GAN) to predict disease risk. In the generator of CE-GAN, community evolutionary convolutions are designed to capture the evolutionary patterns of AD. The experiments are conducted using functional magnetic resonance imaging (fMRI) data and single nucleotide polymorphism (SNP) data. CE-GAN achieves 91.67% accuracy and 91.83% area under curve (AUC) in AD risk prediction tasks, surpassing advanced methods on the same dataset. In addition, we validated the effectiveness of CE-GAN for pathogeny extraction. The source code of this work is available at https://github.com/fmri123456/CE-GAN.
Collapse
|
3
|
Zhao S, Fang L, Yang Y, Tang G, Luo G, Han J, Liu T, Hu X. Task sub-type states decoding via group deep bidirectional recurrent neural network. Med Image Anal 2024; 94:103136. [PMID: 38489895 DOI: 10.1016/j.media.2024.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Decoding brain states under different cognitive tasks from functional magnetic resonance imaging (fMRI) data has attracted great attention in the neuroimaging filed. However, the well-known temporal dependency in fMRI sequences has not been fully exploited in existing studies, due to the limited temporal-modeling capacity of the backbone machine learning algorithms and rigid training sample organization strategies upon which the brain decoding methods are built. To address these limitations, we propose a novel method for fine-grain brain state decoding, namely, group deep bidirectional recurrent neural network (Group-DBRNN) model. We first propose a training sample organization strategy that consists of a group-task sample generation module and a multiple-scale random fragment strategy (MRFS) module to collect training samples that contain rich task-relevant brain activity contrast (i.e., the comparison of neural activity patterns between different tasks) and maintain the temporal dependency. We then develop a novel decoding model by replacing the unidirectional RNNs that are widely used in existing brain state decoding studies with bidirectional stacked RNNs to better capture the temporal dependency, and by introducing a multi-task interaction layer (MTIL) module to effectively model the task-relevant brain activity contrast. Our experimental results on the Human Connectome Project task fMRI dataset (7 tasks consisting of 23 task sub-type states) show that the proposed model achieves an average decoding accuracy of 94.7% over the 23 fine-grain sub-type states. Meanwhile, our extensive interpretations of the intermediate features learned in the proposed model via visualizations and quantitative assessments of their discriminability and inter-subject alignment evidence that the proposed model can effectively capture the temporal dependency and task-relevant contrast.
Collapse
Affiliation(s)
- Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, China
| | - Long Fang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Yang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guochang Tang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guoxin Luo
- Department of Ophthalmology, Nanyang First People's Hospital Affiliated to Henan University, Nanyang 473000, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tianming Liu
- School of Computing, The University of Georgia, GA, USA
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
4
|
Qiang N, Gao J, Dong Q, Yue H, Liang H, Liu L, Yu J, Hu J, Zhang S, Ge B, Sun Y, Liu Z, Liu T, Li J, Song H, Zhao S. Functional brain network identification and fMRI augmentation using a VAE-GAN framework. Comput Biol Med 2023; 165:107395. [PMID: 37669583 DOI: 10.1016/j.compbiomed.2023.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/04/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
Recently, deep learning models have achieved superior performance for mapping functional brain networks from functional magnetic resonance imaging (fMRI) data compared with traditional methods. However, due to the lack of sufficient data and the high dimensionality of brain volume, deep learning models of fMRI tend to suffer from overfitting. In addition, existing methods rarely studied fMRI data augmentation and its application. To address these issues, we developed a VAE-GAN framework that combined a VAE (variational auto-encoder) with a GAN (generative adversarial net) for functional brain network identification and fMRI augmentation. As a generative model, the VAE-GAN models the distribution of fMRI so that it enables the extraction of more generalized features, and thus relieve the overfitting issue. The VAE-GAN is easier to train on fMRI than a standard GAN since it uses latent variables from VAE to generate fake data rather than relying on random noise that is used in a GAN, and it can generate higher quality of fake data than VAE since the discriminator can promote the training of the generator. In other words, the VAE-GAN inherits the advantages of VAE and GAN and avoids their limitations in modeling of fMRI data. Extensive experiments on task fMRI datasets from HCP have proved the effectiveness and superiority of the proposed VAE-GAN framework for identifying both temporal features and functional brain networks compared with existing models, and the quality of fake data is higher than those from VAE and GAN. The results on resting state fMRI of Attention Deficit Hyperactivity Disorder (ADHD)-200 dataset further demonstrated that the fake data generated by the VAE-GAN can help improve the performance of brain network modeling and ADHD classification.
Collapse
Affiliation(s)
- Ning Qiang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China; Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Jie Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Qinglin Dong
- Advanced Medical Computing and Analysis, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Huiji Yue
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Hongtao Liang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Lili Liu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Jingjing Yu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Jing Hu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Shu Zhang
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Bao Ge
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China; Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Yifei Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Zhengliang Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
| | - Jin Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China.
| | - Hujie Song
- Xi'an TCM Hospital of Encephalopathy, Shaanxi University of Chinese Medicine, Xi'an, China.
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
5
|
Qiang N, Gao J, Dong Q, Li J, Zhang S, Liang H, Sun Y, Ge B, Liu Z, Wu Z, Liu T, Yue H, Zhao S. A deep learning method for autism spectrum disorder identification based on interactions of hierarchical brain networks. Behav Brain Res 2023; 452:114603. [PMID: 37516208 DOI: 10.1016/j.bbr.2023.114603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND It has been recently shown that deep learning models exhibited remarkable performance of representing functional Magnetic Resonance Imaging (fMRI) data for the understanding of brain functional activities. With hierarchical structure, deep learning models can infer hierarchical functional brain networks (FBN) from fMRI. However, the applications of the hierarchical FBNs have been rarely studied. METHODS In this work, we proposed a hierarchical recurrent variational auto-encoder (HRVAE) to unsupervisedly model the fMRI data. The trained HRVAE encoder can predict hierarchical temporal features from its three hidden layers, and thus can be regarded as a hierarchical feature extractor. Then LASSO (least absolute shrinkage and selection operator) regression was applied to estimate the corresponding hierarchical FBNs. Based on the hierarchical FBNs from each subject, we constructed a novel classification framework for brain disorder identification and test it on the Autism Brain Imaging Data Exchange (ABIDE) dataset, a world-wide multi-site database of autism spectrum disorder (ASD). We analyzed the hierarchy organization of FBNs, and finally used the overlaps of hierarchical FBNs as features to differentiate ASD from typically developing controls (TDC). RESULTS The experimental results on 871 subjects from ABIDE dataset showed that the HRVAE model can effectively derive hierarchical FBNs including many well-known resting state networks (RSN). Moreover, the classification result improved the state-of-the-art by achieving a very high accuracy of 82.1 %. CONCLUSIONS This work presents a novel data-driven deep learning method using fMRI data for ASD identification, which could provide valuable reference for clinical diagnosis. The classification results suggest that the interactions of hierarchical FBNs have association with brain disorder, which promotes the understanding of FBN hierarchy and could be applied to other brain disorder analysis.
Collapse
Affiliation(s)
- Ning Qiang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China; Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Jie Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Qinglin Dong
- Advanced Medical Computing and Analysis, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jin Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Shu Zhang
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Hongtao Liang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Yifei Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Bao Ge
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China; Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Zhengliang Liu
- Cortical Architecture Imaging and Discovery Lab, School of Computing, The University of Georgia, Athens, GA, USA
| | - Zihao Wu
- Cortical Architecture Imaging and Discovery Lab, School of Computing, The University of Georgia, Athens, GA, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, School of Computing, The University of Georgia, Athens, GA, USA
| | - Huiji Yue
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China.
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
6
|
Generative Adversarial Networks based on optimal transport: a survey. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|