1
|
Tu Z, Xu J, Dong Z, Zhang S, Tan J. Biomechanical evaluation for bone arthrosis morphology based on reconstructed dynamic kinesiology. Med Eng Phys 2025; 135:104278. [PMID: 39922643 DOI: 10.1016/j.medengphy.2024.104278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/09/2024] [Accepted: 12/15/2024] [Indexed: 02/10/2025]
Abstract
A biomechanical evaluation method for bone arthrosis morphology based on reconstructed dynamic kinesiology (RDK) is proposed. The hip joint is a ball-and-socket joint, morphologically characterized by an acetabulum with a nearly spherical concavity and uniform curvatures, where Gaussian curvature exhibits negative characteristic. Subsequently, RDK of bone joint morphology is developed, offering detailed anatomical and kinematic insights. The hip joint is taken as a verification instance, where a precise biomechanical evaluation of bone arthrosis morphology is simulated through finite element analysis (FEA). Latin Hypercube sampling (LHS) with the criterion of maximizing the minimum distance enhances uniformity and representation. The response surface is subsequently constructed by Kriging interpolation, significantly enhancing computational efficiency and FEA accuracy. Innovatively, a stress contour statistical histogram of load transfer is presented to quantitatively analyze the stress lines, supplying support for biomechanical evaluation, which is essential for accurate hip replacement planning. The instance indicates that the proposed RDK facilitates accurate biomechanical evaluations for bone arthrosis morphology, providing a critical theoretical foundation for conceptual design of ergonomic wearable devices, as well as optimization of replacement surgeries.
Collapse
Affiliation(s)
- Zhengxin Tu
- Institute of Design Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jinghua Xu
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China; State Key Lab of Mechanical Transmissions, Chongqing University, Chongqing, 400044, China; Zhejiang Key Lab of Advanced Manufacturing Technology, Zhejiang University, Hangzhou, 310058, China; Institute of Design Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Zhenyu Dong
- Qingdao Huangdao District People's Hospital, Qingdao, 266400, China
| | - Shuyou Zhang
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Lab of Advanced Manufacturing Technology, Zhejiang University, Hangzhou, 310058, China; Institute of Design Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jianrong Tan
- State Key Lab of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Lab of Advanced Manufacturing Technology, Zhejiang University, Hangzhou, 310058, China; Institute of Design Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Jia T, Guines D, Gordin DM, Leotoing L, Gloriant T. Finite element analysis of a low modulus Ti-20Zr-3Mo-3Sn alloy designed to reduce the stress shielding effect of a hip prosthesis. J Mech Behav Biomed Mater 2024; 157:106640. [PMID: 38917558 DOI: 10.1016/j.jmbbm.2024.106640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
After total hip arthroplasty, the stress shielding effect can occur due to the difference of stiffness between the metallic alloy of the stems and the host bone, which may cause a proximal bone loss. To overcome this problem, a low-modulus metastable β Ti-20Zr-3Mo-3Sn alloy composition has recently been designed to be potentially used for the cementless femoral hip stems. After having verified experimentally that the β alloy has a low modulus of around 50 GPa, a finite element analysis was performed on a Ti-20Zr-3Mo-3Sn alloy hip prosthesis model to evaluate the influence of a reduced modulus on stress shielding and stress fields in both stem and bone compared with the medical grade Ti-6Al-4V alloy whose elastic modulus reached 110 GPa. Our results show that the Ti-20Zr-3Mo-3Sn stem with low elastic modulus can effectively reduce the total stress shielding by 45.5% compared to the common Ti-6Al-4V prosthesis. Moreover, it is highlighted that the material elasticity affects the stress distribution in the implant, especially near the bone-stem interfaces.
Collapse
Affiliation(s)
- Tianyu Jia
- University of Rennes, INSA Rennes, CNRS UMR 6226 ISCR, 35000, Rennes, France
| | - Dominique Guines
- University of Rennes, INSA Rennes, LGCGM, EA 3913, 35000, Rennes, France
| | | | - Lionel Leotoing
- University of Rennes, INSA Rennes, LGCGM, EA 3913, 35000, Rennes, France
| | - Thierry Gloriant
- University of Rennes, INSA Rennes, CNRS UMR 6226 ISCR, 35000, Rennes, France.
| |
Collapse
|
3
|
Martin L, Jain P, Ferguson Z, Gholamalizadeh T, Moshfeghifar F, Erleben K, Panozzo D, Abramowitch S, Schneider T. A systematic comparison between FEBio and PolyFEM for biomechanical systems. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107938. [PMID: 38056313 PMCID: PMC10843651 DOI: 10.1016/j.cmpb.2023.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Finite element simulations are widely employed as a non-invasive and cost-effective approach for predicting outcomes in biomechanical simulations. However, traditional finite element software, primarily designed for engineering materials, often encountered limitations in contact detection and enforcement, leading to simulation failure when dealing with complex biomechanical configurations. Currently, a lot of model tuning is required to get physically accurate finite element simulations without failures. This adds significant human interaction to each iteration of a biomechanical model. This study addressed these issues by introducing PolyFEM, a novel finite element solver that guarantees inversion- and intersection-free solutions with completely automatic collision detection. The objective of this research is to validate PolyFEM's capabilities by comparing its results with those obtained from a well-established finite element solver, FEBio. METHODS To achieve this goal, five comparison scenarios were formulated to assess and validate PolyFEM's performance. The simulations were reproduced using both PolyFEM and FEBio, and the final results were compared. The five comparison scenarios included: (1) reproducing simulations from the FEBio test suite, consisting of static, dynamic, and contact-driven simulations; (2) replicating simulations from the verification paper published alongside the original release of FEBio; (3) a biomechanically based contact problem; (4) creating a custom simulation involving high-energy collisions between soft materials to highlight the difference in collision methods between the two solvers; and (5) performing biomechanical simulations of biting and quasi-stance. RESULTS We found that PolyFEM was capable of replicating all simulations previously conducted in FEBio. Particularly noteworthy is PolyFEM's superiority in high-energy contact simulations, where FEBio fell short, unable to complete over half of the simulations in Scenario 4. Although some of the simulations required significantly more simulation time in PolyFEM compared to FEBio, it is important to highlight that PolyFEM achieved these results without the need for any additional model tuning or contact declaration. DISCUSSION Despite being in the early stages of development, PolyFEM currently provides verified solutions for hyperelastic materials that are consistent with FEBio, both in previously published workflows and novel finite element scenarios. PolyFEM exhibited the ability to tackle challenging biomechanical problems where other solvers fell short, thus offering the potential to enhance the accuracy and realism of future finite element analyses.
Collapse
Affiliation(s)
- Liam Martin
- University of Pittsburgh Swanson School of Engineering, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Moshfeghifar F, Gholamalizadeh T, Ferguson Z, Schneider T, Nielsen MB, Panozzo D, Darkner S, Erleben K. LibHip: An open-access hip joint model repository suitable for finite element method simulation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107140. [PMID: 36162245 DOI: 10.1016/j.cmpb.2022.107140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE population-based finite element analysis of hip joints allows us to understand the effect of inter-subject variability on simulation results. Developing large subject-specific population models is challenging and requires extensive manual effort. Thus, the anatomical representations are often subjected to simplification. The discretized geometries do not guarantee conformity in shared interfaces, leading to complications in setting up simulations. Additionally, these models are not openly accessible, challenging reproducibility. Our work provides multiple subject-specific hip joint finite element models and a novel semi-automated modeling workflow. METHODS we reconstruct 11 healthy subject-specific models, including the sacrum, the paired pelvic bones, the paired proximal femurs, the paired hip joints, the paired sacroiliac joints, and the pubic symphysis. The bones are derived from CT scans, and the cartilages are generated from the bone geometries. We generate the whole complex's volume mesh with conforming interfaces. Our models are evaluated using both mesh quality metrics and simulation experiments. RESULTS the geometry of all the models are inspected by our clinical expert and show high-quality discretization with accurate geometries. The simulations produce smooth stress patterns, and the variance among the subjects highlights the effect of inter-subject variability and asymmetry in the predicted results. CONCLUSIONS our work is one of the largest model repositories with respect to the number of subjects and regions of interest in the hip joint area. Our detailed research data, including the clinical images, the segmentation label maps, the finite element models, and software tools, are openly accessible on GitHub and the link is provided in Moshfeghifar et al.(2022)[1]. Our aim is to empower clinical researchers to have free access to verified and reproducible models. In future work, we aim to add additional structures to our models.
Collapse
Affiliation(s)
- Faezeh Moshfeghifar
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark.
| | - Torkan Gholamalizadeh
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark; 3Shape A/S, Copenhagen 1060, Denmark
| | - Zachary Ferguson
- Courant Institute of Mathematical Sciences, New York University, 60 5th Ave, New York, NY 10011, United States
| | - Teseo Schneider
- Department of Computer Science, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Michael Bachmann Nielsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Diagnostic Radiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniele Panozzo
- Courant Institute of Mathematical Sciences, New York University, 60 5th Ave, New York, NY 10011, United States
| | - Sune Darkner
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kenny Erleben
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
5
|
Gholamalizadeh T, Moshfeghifar F, Ferguson Z, Schneider T, Panozzo D, Darkner S, Makaremi M, Chan F, Søndergaard PL, Erleben K. Open-Full-Jaw: An open-access dataset and pipeline for finite element models of human jaw. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:107009. [PMID: 35872385 DOI: 10.1016/j.cmpb.2022.107009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND State-of-the-art finite element studies on human jaws are mostly limited to the geometry of a single patient. In general, developing accurate patient-specific computational models of the human jaw acquired from cone-beam computed tomography (CBCT) scans is labor-intensive and non-trivial, which involves time-consuming human-in-the-loop procedures, such as segmentation, geometry reconstruction, and re-meshing tasks. Therefore, with the current practice, researchers need to spend considerable time and effort to produce finite element models (FEMs) to get to the point where they can use the models to answer clinically-interesting questions. Besides, any manual task involved in the process makes it difficult for the researchers to reproduce identical models generated in the literature. Hence, a quantitative comparison is not attainable due to the lack of surface/volumetric meshes and FEMs. METHODS We share an open-access repository composed of 17 patient-specific computational models of human jaws and the utilized pipeline for generating them for reproducibility of our work. The used pipeline minimizes the required time for processing and any potential biases in the model generation process caused by human intervention. It gets the segmented geometries with irregular and dense surface meshes and provides reduced, adaptive, watertight, and conformal surface/volumetric meshes, which can directly be used in finite element (FE) analysis. RESULTS We have quantified the variability of our 17 models and assessed the accuracy of the developed models from three different aspects; (1) the maximum deviations from the input meshes using the Hausdorff distance as an error measurement, (2) the quality of the developed volumetric meshes, and (3) the stability of the FE models under two different scenarios of tipping and biting. CONCLUSIONS The obtained results indicate that the developed computational models are precise, and they consist of quality meshes suitable for various FE scenarios. We believe the provided dataset of models including a high geometrical variation obtained from 17 different models will pave the way for population studies focusing on the biomechanical behavior of human jaws.
Collapse
Affiliation(s)
- Torkan Gholamalizadeh
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark; 3Shape A/S, Copenhagen 1060, Denmark.
| | - Faezeh Moshfeghifar
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark
| | - Zachary Ferguson
- Courant Institute of Mathematical Sciences, New York University, 60 5th Ave, New York NY 10011, USA
| | - Teseo Schneider
- Department of Computer Science, University of Victoria, Victoria BC V8P 5C2, Canada
| | - Daniele Panozzo
- Courant Institute of Mathematical Sciences, New York University, 60 5th Ave, New York NY 10011, USA
| | - Sune Darkner
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark
| | - Masrour Makaremi
- Dentofacial Orthopedics Department, University of Bordeaux, Bordeaux, France; Orthodontie clinic, 2 Rue des 2 Conils, Bergerac 24100, France
| | - François Chan
- Orthodontie clinic, 2 Rue des 2 Conils, Bergerac 24100, France
| | | | - Kenny Erleben
- Department of Computer Science, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|