1
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
2
|
Hilber P. The Role of the Cerebellar and Vestibular Networks in Anxiety Disorders and Depression: the Internal Model Hypothesis. CEREBELLUM (LONDON, ENGLAND) 2022; 21:791-800. [PMID: 35414040 DOI: 10.1007/s12311-022-01400-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Clinical data and animal studies confirmed that the cerebellum and the vestibular system are involved in emotions. Nowadays, no real consensus has really emerged to explain the clinical symptoms in humans and behavioral deficits in the animal models. We envisage here that the cerebellum and the vestibular system play complementary roles in emotional reactivity. The cerebellum integrates a large variety of exteroceptive and proprioceptive information necessary to elaborate and to update the internal model: in emotion, as in motor processes, it helps our body and self to adapt to the environment, and to anticipate any changes in such environment in order to produce a time-adapted response. The vestibular system provides relevant environmental stimuli (i.e., gravity, self-position, and movement) and is involved in self-perception. Consequently, cerebellar or vestibular disorders could generate « internal fake news» (due to lack or false sensory information and/or integration) that could, in turn, generate potential internal model deficiencies. In this case, the alterations provoke false anticipation of motor command and external sensory feedback, associated with unsuited behaviors. As a result, the individual becomes progressively unable to cope with the environmental solicitation. We postulate that chronically unsuited, and potentially inefficient, behavioral and visceral responses to environmental solicitations lead to stressful situations. Furthermore, this inability to adapt to the context of the situation generates chronic anxiety which could precede depressive states.
Collapse
Affiliation(s)
- Pascal Hilber
- UNIROUEN, INSERM U1245, Cancer and Brain Genomics, Normandie University, 76000, Rouen, France.
- Institute for Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France.
| |
Collapse
|
3
|
Gouda B, Sinha SN, Chalamaiah M, Vakdevi V, Shashikala P, Veeresh B, Surekha VM, Kasturi V, Boiroju NK. Sex Differences in Animal Models of Sodium-Valproate-Induced Autism in Postnatal BALB/c Mice: Whole-Brain Histoarchitecture and 5-HT2A Receptor Biomarker Evidence. BIOLOGY 2022; 11:biology11010079. [PMID: 35053076 PMCID: PMC8772829 DOI: 10.3390/biology11010079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023]
Abstract
Simple Summary Valproic acid (VPA) is a well-known antiepileptic medication and mood stabiliser that is frequently prescribed for the treatment of epilepsy, particularly in children, and has proven human teratogenic activity. VPA inhibits histone deacetylase, which causes teratogenicity and cell toxicity. VPA-induced autism in rodents during the pre- and postnatal periods has shown the development of an autism-like phenotype. In mice, the 14th postnatal day is thought to correspond to the third trimester of human development; it is an important period in which neuronal migration, differentiation, myelination, synaptogenesis and gliogenesis occur in the cerebellum, striatum and hippocampus. Therefore, we exposed postnatal day 14 (PND 14) mice to VPA, which resulted in autistic-like behaviours manifested as reduced social interaction, increased repetitive stereotyped behaviour and anxiety, cognitive dysfunction, lowered sensitivity to pain and neurodevelopmental delay. BALB/c mice were used in this work because they are less reactive to social contact in VPA-induced autism than many other inbred mouse strains, such as C57/129 mice. In humans, two to three times more men are affected by autism spectrum disorder (ASD) than women, and, for this reason, the current study compares the histopathological changes and 5-hydroxy-tryptamine 2A (5-HT2A) receptor protein expression in the brain tissue of male and female animals with VPA-induced autism. Abstract Autism spectrum disorder (ASD) is characterised by problems with social interaction, verbal and nonverbal communication and repetitive behaviour. In mice, the 14th postnatal day is believed to correspond to the third trimester of human embryonic development and is considered a vital period for central nervous system development. It has been shown that ASD affects 2 to 3 times more male than female individuals. In the present study, ASD was induced in 14 postnatal day (PND) BALB/c mice using valproic acid (VPA). VPA administration brought about substantial differences in the histoarchitecture of the brain in both male and female mice, linked to behavioural deficits. We observed that both male and female mice showed similar morphological changes in the prefrontal cortex, hippocampus and Purkinje cells. We also observed hair loss from PND 17 to 25, which was again similar between male and female mice. However, there were higher rates of change in the cerebral cortex, frontal cortex and temporal lobe and hippocampus in VPA-treated male animals. With respect to the cerebellum, we did not observe any alterations by haematoxylin and eosin (H&E) staining, but detailed morphological observation using scanning electron microscopy (SEM) showed a higher rate of phenotype changes in VPA-treated male animals. Moreover, 5-HT2A receptor protein levels were upregulated in the cerebral cortex, hippocampus and Purkinje cells in VPA-treated male mice compared with control animals and VPA-treated female mice, as shown by immunohistochemical analysis. Based on all these findings, we conclude that male animals are more susceptible to VPA-induced ASD than females.
Collapse
Affiliation(s)
- Balaji Gouda
- Division of Food Safety, Indian Council of Medical Research, National Institute of Nutrition, Jamai-Osmania, Hyderabad 500007, India; (B.G.); (V.V.); (V.K.)
| | - Sukesh Narayan Sinha
- Division of Food Safety, Indian Council of Medical Research, National Institute of Nutrition, Jamai-Osmania, Hyderabad 500007, India; (B.G.); (V.V.); (V.K.)
- Correspondence: ; Tel.: +91-40-27197405
| | - Meram Chalamaiah
- Drug Safety Division, Indian Council of Medical Research, National Institute of Nutrition, Jamai-Osmania, Hyderabad 500007, India;
| | - Validandi Vakdevi
- Division of Food Safety, Indian Council of Medical Research, National Institute of Nutrition, Jamai-Osmania, Hyderabad 500007, India; (B.G.); (V.V.); (V.K.)
| | - Patangay Shashikala
- Department of Pharmacy, University College of Technology, Osmania University, Hyderabad 500027, India;
| | - Bantal Veeresh
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Osmania University, Hyderabad 500028, India;
| | - Venkata Mullapudi Surekha
- Division of Pathology and Microbiology, Indian Council of Medical Research, National Institute of Nutrition, Jamai-Osmania, Hyderabad 500007, India;
| | - Vasudev Kasturi
- Division of Food Safety, Indian Council of Medical Research, National Institute of Nutrition, Jamai-Osmania, Hyderabad 500007, India; (B.G.); (V.V.); (V.K.)
| | - Naveen Kumar Boiroju
- Division of Biostatistics, Indian Council of Medical Research, National Institute of Nutrition, Tarnaka, Hyderabad 500007, India;
| |
Collapse
|
4
|
Hilber P, Cendelin J, Le Gall A, Machado ML, Tuma J, Besnard S. Cooperation of the vestibular and cerebellar networks in anxiety disorders and depression. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:310-321. [PMID: 30292730 DOI: 10.1016/j.pnpbp.2018.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 12/28/2022]
Abstract
The discipline of affective neuroscience is concerned with the neural bases of emotion and mood. The past decades have witnessed an explosion of research in affective neuroscience, increasing our knowledge of the brain areas involved in fear and anxiety. Besides the brain areas that are classically associated with emotional reactivity, accumulating evidence indicates that both the vestibular and cerebellar systems are involved not only in motor coordination but also influence both cognition and emotional regulation in humans and animal models. The cerebellar and the vestibular systems show the reciprocal connection with a myriad of anxiety and fear brain areas. Perception anticipation and action are also major centers of interest in cognitive neurosciences. The cerebellum is crucial for the development of an internal model of action and the vestibular system is relevant for perception, gravity-related balance, navigation and motor decision-making. Furthermore, there are close relationships between these two systems. With regard to the cooperation between the vestibular and cerebellar systems for the elaboration and the coordination of emotional cognitive and visceral responses, we propose that altering the function of one of the systems could provoke internal model disturbances and, as a result, anxiety disorders followed potentially with depressive states.
Collapse
Affiliation(s)
- Pascal Hilber
- Centre de Recherche sur les Fonctionnements et Dysfonctionnements Psychologigues, CRFDP EA 7475, Rouen Normandie University, Bat Blondel, Place E. Blondel 76821, Mont Saint Aignan cedex, France.
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Plzen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Plzen, Czech Republic
| | - Anne Le Gall
- UMR UCBN/INSERM U 1075 COMETE, Pole des Formations et de Recherche en Sante, Normandie University, 2 Rue Rochambelles, 14032 Caen, cedex 5, France
| | - Marie-Laure Machado
- UMR UCBN/INSERM U 1075 COMETE, Pole des Formations et de Recherche en Sante, Normandie University, 2 Rue Rochambelles, 14032 Caen, cedex 5, France
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Plzen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00 Plzen, Czech Republic
| | - Stephane Besnard
- UMR UCBN/INSERM U 1075 COMETE, Pole des Formations et de Recherche en Sante, Normandie University, 2 Rue Rochambelles, 14032 Caen, cedex 5, France
| |
Collapse
|
5
|
Modeling possible effects of atypical cerebellar processing on eyeblink conditioning in autism. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 14:1142-64. [PMID: 24590391 DOI: 10.3758/s13415-014-0263-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autism is unique among other disorders in that acquisition of conditioned eyeblink responses is enhanced in children, occurring in a fraction of the trials required for control participants. The timing of learned responses is, however, atypical. Two animal models of autism display a similar phenotype. Researchers have hypothesized that these differences in conditioning reflect cerebellar abnormalities. The present study used computer simulations of the cerebellar cortex, including inhibition by the molecular layer interneurons, to more closely examine whether atypical cerebellar processing can account for faster conditioning in individuals with autism. In particular, the effects of inhibitory levels on delay eyeblink conditioning were simulated, as were the effects of learning-related synaptic changes at either parallel fibers or ascending branch synapses from granule cells to Purkinje cells. Results from these simulations predict that whether molecular layer inhibition results in an enhancement or an impairment of acquisition, or changes in timing, may depend on (1) the sources of inhibition, (2) the levels of inhibition, and (3) the locations of learning-related changes (parallel vs. ascending branch synapses). Overall, the simulations predict that a disruption in the balance or an overall increase of inhibition within the cerebellar cortex may contribute to atypical eyeblink conditioning in children with autism and in animal models of autism.
Collapse
|
6
|
Pragnya B, Kameshwari JSL, Veeresh B. Ameliorating effect of piperine on behavioral abnormalities and oxidative markers in sodium valproate induced autism in BALB/C mice. Behav Brain Res 2014; 270:86-94. [PMID: 24803211 DOI: 10.1016/j.bbr.2014.04.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 01/28/2023]
Abstract
Post natal exposure to VPA (valproic acid) in mice induces behavioral deficits, abnormal sensitivity to sensory stimuli and self-injurious behavior, observed in autism. Piperine has been reported to have protective effect on brain. The present study aimed at evaluating effect of piperine on VPA induced neurobehavioral and biochemical alterations in BALB/c mice. Young BALB/c mice 13 days old were procured from five different litters and segregated into five groups (n=6; 3 male, 3 female) i.e., Group I served as control group, received physiological saline on PND (Post natal day) 14 & Tween 80 p.o. from PND13-40. Group II served as normal treated group and received piperine (20mg/kg p.o.) from PND 13-40 and saline s.c. on PND 14. Group III served as valproate treated group received VPA (400mg/kg s.c.) on PND 14 and Tween 80 p.o. from PND 13-40. Group IV & V served as disease treated group received VPA (400mg/kg s.c.) on PND 14 & piperine (5 & 20mg/kg p.o.) from PND 13-40 respectively. BALB/c mice pups were subjected to behavioral testing to assess motor skill development, nociceptive response, locomotion, anxiety, and cognition on various postnatal days up to PND 40. At the end of behavioral evaluation, mice were sacrificed; brain was isolated for biochemical estimations (serotonin, glutathione, MDA and nitric oxide) and histopathological examination. Our study revealed that treatment with piperine significantly improved behavioral alterations, lowered oxidative stress markers, and restored histoarchitecture of cerebellum. This ameliorating effect of piperine is attributed to its anti-oxidant activity, cognition enhancing and neuroprotective activity.
Collapse
Affiliation(s)
- B Pragnya
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Osmania University, Hyderabad, Andhra Pradesh 500027, India.
| | - J S L Kameshwari
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Osmania University, Hyderabad, Andhra Pradesh 500027, India
| | - B Veeresh
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Osmania University, Hyderabad, Andhra Pradesh 500027, India
| |
Collapse
|
7
|
Neuropathology and animal models of autism: genetic and environmental factors. AUTISM RESEARCH AND TREATMENT 2013; 2013:731935. [PMID: 24151553 PMCID: PMC3787615 DOI: 10.1155/2013/731935] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023]
Abstract
Autism is a heterogeneous behaviorally defined neurodevelopmental disorder. It is defined by the presence of marked social deficits, specific language abnormalities, and stereotyped repetitive patterns of behavior. Because of the variability in the behavioral phenotype of the disorder among patients, the term autism spectrum disorder has been established. In the first part of this review, we provide an overview of neuropathological findings from studies of autism postmortem brains and identify the cerebellum as one of the key brain regions that can play a role in the autism phenotype. We review research findings that indicate possible links between the environment and autism including the role of mercury and immune-related factors. Because both genes and environment can alter the structure of the developing brain in different ways, it is not surprising that there is heterogeneity in the behavioral and neuropathological phenotypes of autism spectrum disorders. Finally, we describe animal models of autism that occur following insertion of different autism-related genes and exposure to environmental factors, highlighting those models which exhibit both autism-like behavior and neuropathology.
Collapse
|
8
|
Aldinger KA, Kogan J, Kimonis V, Fernandez B, Horn D, Klopocki E, Chung B, Toutain A, Weksberg R, Millen KJ, Barkovich AJ, Dobyns WB. Cerebellar and posterior fossa malformations in patients with autism-associated chromosome 22q13 terminal deletion. Am J Med Genet A 2012; 161A:131-6. [PMID: 23225497 DOI: 10.1002/ajmg.a.35700] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/01/2012] [Indexed: 11/07/2022]
Abstract
The 22q13.3 deletion causes a neurodevelopmental syndrome, also known as Phelan-McDermid syndrome (MIM #606232), characterized by developmental delay and severe delay or absence of expressive speech. Two patients with hemizygous chromosome 22q13.3 telomeric deletion were referred to us when brain-imaging studies revealed cerebellar vermis hypoplasia (CBVH). To determine whether developmental abnormalities of the cerebellum are a consistent feature of the 22q13.3 deletion syndrome, we examined brain-imaging studies for 10 unrelated subjects with 22q13 terminal deletion. In seven cases where the availability of DNA and array technology allowed, we mapped deletion boundaries using comparative intensity analysis with single nucleotide polymorphism (SNP) microarrays. Approximate deletion boundaries for three additional cases were derived from clinical or published molecular data. We also examined brain-imaging studies for a patient with an intragenic SHANK3 mutation. We report the first brain-imaging data showing that some patients with 22q13 deletions have severe posterior CBVH, and one individual with a SHANK3 mutation has a normal cerebellum. This genotype-phenotype study suggests that the 22q13 deletion phenotype includes abnormal posterior fossa structures that are unlikely to be attributed to SHANK3 disruption. Other genes in the region, including PLXNB2 and MAPK8IP2, display brain expression patterns and mouse mutant phenotypes critical for proper cerebellar development. Future studies of these genes may elucidate their relationship to 22q13.3 deletion phenotypes.
Collapse
|
9
|
Arias-Salvatierra D, Silbergeld EK, Acosta-Saavedra LC, Calderon-Aranda ES. Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by Lipopolysaccharide. Cell Signal 2010; 23:425-35. [PMID: 20955790 DOI: 10.1016/j.cellsig.2010.10.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/08/2010] [Indexed: 11/27/2022]
Abstract
Inflammatory stimulus during development increases the risk for adverse neurologic outcome. One possible mechanism is disrupting neuronal migration. Using lipopolysaccharide (LPS)-treatment to assess inflammatory stimulus on neuronal migration of cerebellar granule neurons, we previously found that LPS-activation increased the neuronal migration. The precise mechanisms behind these effects have not been investigated. Independently, it was shown that nitric oxide (NO(•-)) regulates neuronal migration during development, that NO(•-) is produced by inducible nitric oxide synthase (iNOS) in response to LPS through the activation of nuclear factor (NF)-κB, and that LPS induce the expression of genes under the transcriptional control of NF-κB in primary cultures from developing mouse cerebellum. To investigate the relationship between these events, we used this culture model to study the role of NO(•-) produced by iNOS through NF-κB signaling pathway, in the effect of LPS on neuron migration. LPS increased NO(•-) production, iNOS protein levels and NF-κB nuclear levels; concomitantly with NO(•-) production, LPS increased the neuronal migration as compared to non stimulated cultures. The necessary roles of the NO(•-) and iNOS were demonstrated by chelating of NO(•-) with hemoglobin and the inhibition of iNOS by 1400W. Each of these treatments reduced neuronal migration induced by LPS. The role of NF-κB was showed by using the inhibitor JSH-23, which decreased NO(•-) production and neuronal migration in LPS activated cultures. These results suggest that neuronal migration during development is susceptible to be modified by pro-inflammatory stimulus such as LPS through intracellular pathways associated with their receptors.
Collapse
|
10
|
Abstract
Newborn infants must rapidly adjust their physiology and behavior to the specific demands of the novel postnatal environment. This adaptation depends, at least in part, on the infant's ability to learn from experiences. We report here that infants exhibit learning even while asleep. Bioelectrical activity from face and scalp electrodes was recorded from neonates during an eye movement conditioning procedure in which a tone was followed by a puff of air to the eye. Sleeping newborns rapidly learned the predictive relationship between the tone and the puff. Additionally, in the latter part of training, these infants exhibited a frontally maximum positive EEG slow wave possibly reflecting memory updating. As newborns spend most of their time sleeping, the ability to learn about external stimuli in the postnatal environment during nonawake states may be crucial for rapid adaptation and infant survival. Furthermore, because eyelid conditioning reflects functional cerebellar circuitry, this method potentially offers a unique approach for early identification of infants at risk for a range of developmental disorders including autism and dyslexia.
Collapse
|
11
|
Foldi CJ, Eyles DW, McGrath JJ, Burne THJ. Advanced paternal age is associated with alterations in discrete behavioural domains and cortical neuroanatomy of C57BL/6J mice. Eur J Neurosci 2010; 31:556-64. [DOI: 10.1111/j.1460-9568.2010.07074.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Alteration of Attentional Blink in High Functioning Autism: A Pilot Study. J Autism Dev Disord 2009; 39:1522-8. [DOI: 10.1007/s10803-009-0821-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
|
13
|
Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behav Immun 2009; 23:116-23. [PMID: 18755264 PMCID: PMC2614890 DOI: 10.1016/j.bbi.2008.07.012] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/19/2008] [Accepted: 07/29/2008] [Indexed: 11/23/2022] Open
Abstract
A common pathological finding in autism is a localized deficit in Purkinje cells (PCs). Cerebellar abnormalities have also been reported in schizophrenia. Using a mouse model that exploits a known risk factor for these disorders, maternal infection, we asked if the offspring of pregnant mice given a mid-gestation respiratory infection have cerebellar pathology resembling that seen in these disorders. We also tested the effects of maternal immune activation in the absence of virus by injection of the synthetic dsRNA, poly(I:C). We infected pregnant mice with influenza on embryonic day 9.5 (E9.5), or injected poly(I:C) i.p. on E12.5, and assessed the linear density of PCs in the cerebellum of adult or postnatal day 11 (P11) offspring. To study granule cell migration, we also injected BrdU on P11. Adult offspring of influenza- or poly(I:C)-exposed mice display a localized deficit in PCs in lobule VII of the cerebellum, as do P11 offspring. Coincident with this are heterotopic PCs, as well as delayed migration of granule cells in lobules VI and VII. The cerebellar pathology observed in the offspring of influenza- or poly(I:C)-exposed mice is strikingly similar to that observed in autism. The poly(I:C) findings indicate that deficits are likely caused by the activation of the maternal immune system. Finally, our data suggest that cerebellar abnormalities occur during embryonic development, and may be an early deficit in autism and schizophrenia.
Collapse
|
14
|
Cerebellum and Detection of Sequences, from Perception to Cognition. THE CEREBELLUM 2008; 7:611-5. [DOI: 10.1007/s12311-008-0060-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Jasmin E, Couture M, McKinley P, Reid G, Fombonne E, Gisel E. Sensori-motor and daily living skills of preschool children with autism spectrum disorders. J Autism Dev Disord 2008; 39:231-41. [PMID: 18629623 DOI: 10.1007/s10803-008-0617-z] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 06/30/2008] [Indexed: 01/15/2023]
Abstract
Sensori-motor development and performance of daily living skills (DLS) remain little explored in children with autism spectrum disorders (ASD). The objective of this study was to determine the impact of sensori-motor skills on the performance of DLS in preschool children with ASD. Thirty-five children, 3-4 years of age, were recruited and assessed with a battery of diagnostic and clinical tests. Children showed atypical sensory responses, very poor motor and DLS. Sensory avoiding, an excessive reaction to sensory stimuli, and fine motor skills were highly correlated with DLS, even when cognitive performance was taken into account. Sensori-motor deficits have an impact on the autonomy of children with ASD and interventions should aim at improving and supporting the development of sensori-motor skills.
Collapse
Affiliation(s)
- Emmanuelle Jasmin
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Hocking DR, Bradshaw JL, Rinehart NJ. Fronto-parietal and cerebellar contributions to motor dysfunction in Williams syndrome: A review and future directions. Neurosci Biobehav Rev 2008; 32:497-507. [DOI: 10.1016/j.neubiorev.2007.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 09/12/2007] [Accepted: 09/30/2007] [Indexed: 12/29/2022]
|