1
|
Koekkoek LL, Masís-Vargas A, Kool T, Eggels L, van der Gun LL, Lamuadni K, Slomp M, Diepenbroek C, Kalsbeek A, la Fleur SE. Sucrose drinking mimics effects of nucleus accumbens µ-opioid receptor stimulation on fat intake and brain c-Fos-expression. Nutr Neurosci 2021; 25:2408-2420. [PMID: 34490827 DOI: 10.1080/1028415x.2021.1975365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objectives: We have previously shown that the combined consumption of fat and a sucrose solution induces overeating, and there is evidence indicating that sucrose drinking directly stimulates fat intake. One neurochemical pathway by which sucrose may enhance fat intake is through the release of endogenous opioids in the nucleus accumbens (NAC).Methods: To test this hypothesis, we provided rats with a free-choice high-fat diet for two weeks. During the second week, rats had access to an additional bottle of water or a 30% sucrose solution for five minutes per day. After these two weeks, we infused vehicle or the μ-opioid receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) into the NAC 30 min after their daily access to the additional bottle of water or the sucrose solution.Results: Sucrose drinking had two effects, (1) it stimulated fat intake in the absence of DAMGO infusion, (2) it diminished sensitivity to DAMGO, as it prevented the rapid increase in fat intake typically seen upon DAMGO infusion in the nucleus accumbens. In a second experiment, we confirmed that these results are not due to the ingested calories of the sucrose solution. Lastly, we investigated which brain areas are involved in the observed effects on fat intake by assessing c-Fos-expression in brain areas previously linked to DAMGO's effects on food intake. Both intra-NAC DAMGO infusion and sucrose consumption in the absence of DAMGO infusion had no effect on c-Fos-expression in orexin neurons and the central amygdala but increased c-Fos-expression in the NAC as well as the basolateral amygdala.Discussion: In conclusion, we confirm that sucrose drinking stimulates fat intake, likely through the release of endogenous opioids.
Collapse
Affiliation(s)
- L L Koekkoek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - A Masís-Vargas
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - T Kool
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - L Eggels
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - L L van der Gun
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - K Lamuadni
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - M Slomp
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - C Diepenbroek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - A Kalsbeek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - S E la Fleur
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Koekkoek LL, Mul JD, la Fleur SE. Glucose-Sensing in the Reward System. Front Neurosci 2017; 11:716. [PMID: 29311793 PMCID: PMC5742113 DOI: 10.3389/fnins.2017.00716] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/07/2017] [Indexed: 01/14/2023] Open
Abstract
Glucose-sensing neurons are neurons that alter their activity in response to changes in extracellular glucose. These neurons, which are an important mechanism the brain uses to monitor changes in glycaemia, are present in the hypothalamus, where they have been thoroughly investigated. Recently, glucose-sensing neurons have also been identified in brain nuclei which are part of the reward system. However, little is known about the molecular mechanisms by which they function, and their role in the reward system. We therefore aim to provide an overview of molecular mechanisms that have been studied in the hypothalamic glucose-sensing neurons, and investigate which of these transporters, enzymes and channels are present in the reward system. Furthermore, we speculate about the role of glucose-sensing neurons in the reward system.
Collapse
Affiliation(s)
- Laura L Koekkoek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Joram D Mul
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Endocrinology, Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|