1
|
Cartiglia M, Costa F, Narayanan S, Bui CVH, Ulusan H, Risi N, Haessig G, Hierlemann A, Cardes F, Indiveri G. A 4096 channel event-based multielectrode array with asynchronous outputs compatible with neuromorphic processors. Nat Commun 2024; 15:7163. [PMID: 39169023 PMCID: PMC11339437 DOI: 10.1038/s41467-024-50783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/19/2024] [Indexed: 08/23/2024] Open
Abstract
Bio-signal sensing is pivotal in medical bioelectronics. Traditional methods focus on high sampling rates, leading to large amounts of irrelevant data and high energy consumption. We introduce a self-clocked microelectrode array (MEA) that digitizes bio-signals at the pixel level by encoding changes as asynchronous digital address-events only when they exceed a threshold, significantly reducing off-chip data transmission. This novel MEA comprises a 64 × 64 electrode array, an asynchronous 2D-arbiter, and an Address-Event Representation (AER) communication block. Each pixel operates autonomously, monitoring voltage fluctuations from cellular activity and producing digital pulses for significant changes. Positive and negative signal changes are encoded as "up" and "down" events and are routed off-chip via the asynchronous arbiter. We present results from chip characterization and experimental measurements using electrogenic cells. Additionally, we interface the MEA to a mixed-signal neuromorphic processor, demonstrating a prototype for end-to-end event-based bio-signal sensing and processing.
Collapse
Affiliation(s)
- Matteo Cartiglia
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Filippo Costa
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Shyam Narayanan
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Cat-Vu H Bui
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Hasan Ulusan
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Nicoletta Risi
- Bio-Inspired Circuits and Systems Lab, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
- Groningen Cognitive Systems and Materials Center, University of Groningen, Groningen, Netherlands
| | - Germain Haessig
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Fernando Cardes
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Soldado-Magraner S, Buonomano DV. Neural Sequences and the Encoding of Time. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:81-93. [PMID: 38918347 DOI: 10.1007/978-3-031-60183-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Converging experimental and computational evidence indicate that on the scale of seconds the brain encodes time through changing patterns of neural activity. Experimentally, two general forms of neural dynamic regimes that can encode time have been observed: neural population clocks and ramping activity. Neural population clocks provide a high-dimensional code to generate complex spatiotemporal output patterns, in which each neuron exhibits a nonlinear temporal profile. A prototypical example of neural population clocks are neural sequences, which have been observed across species, brain areas, and behavioral paradigms. Additionally, neural sequences emerge in artificial neural networks trained to solve time-dependent tasks. Here, we examine the role of neural sequences in the encoding of time, and how they may emerge in a biologically plausible manner. We conclude that neural sequences may represent a canonical computational regime to perform temporal computations.
Collapse
Affiliation(s)
| | - Dean V Buonomano
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Buhusi CV, Oprisan SA, Buhusi M. The future of integrative neuroscience: The big questions. Front Integr Neurosci 2023; 17:1113238. [PMID: 36908505 PMCID: PMC9995763 DOI: 10.3389/fnint.2023.1113238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Affiliation(s)
- Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, USTAR BioInnovations Center, Utah State University, Logan, UT, United States
| | - Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, USTAR BioInnovations Center, Utah State University, Logan, UT, United States
| |
Collapse
|
4
|
Chinoy RB, Tanwar A, Buonomano DV. A Recurrent Neural Network Model Accounts for Both Timing and Working Memory Components of an Interval Discrimination Task. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Interval discrimination is of fundamental importance to many forms of sensory processing, including speech and music. Standard interval discrimination tasks require comparing two intervals separated in time, and thus include both working memory (WM) and timing components. Models of interval discrimination invoke separate circuits for the timing and WM components. Here we examine if, in principle, the same recurrent neural network can implement both. Using human psychophysics, we first explored the role of the WM component by varying the interstimulus delay. Consistent with previous studies, discrimination was significantly worse for a 250 ms delay, compared to 750 and 1500 ms delays, suggesting that the first interval is stably stored in WM for longer delays. We next successfully trained a recurrent neural network (RNN) on the task, demonstrating that the same network can implement both the timing and WM components. Many units in the RNN were tuned to specific intervals during the sensory epoch, and others encoded the first interval during the delay period. Overall, the encoding strategy was consistent with the notion of mixed selectivity. Units generally encoded more interval information during the sensory epoch than in the delay period, reflecting categorical encoding of short versus long in WM, rather than encoding of the specific interval. Our results demonstrate that, in contrast to standard models of interval discrimination that invoke a separate memory module, the same network can, in principle, solve the timing, WM, and comparison components of an interval discrimination task.
Collapse
Affiliation(s)
- Rehan B. Chinoy
- Departments of Neurobiology and Psychology, Brain Research Institute, and Integrative Center for Learning and Memory, University of California, Los Angeles, CA 90095–1763, USA
| | - Ashita Tanwar
- Departments of Neurobiology and Psychology, Brain Research Institute, and Integrative Center for Learning and Memory, University of California, Los Angeles, CA 90095–1763, USA
| | - Dean V. Buonomano
- Departments of Neurobiology and Psychology, Brain Research Institute, and Integrative Center for Learning and Memory, University of California, Los Angeles, CA 90095–1763, USA
| |
Collapse
|
5
|
Yin B, Shi Z, Wang Y, Meck WH. Oscillation/Coincidence-Detection Models of Reward-Related Timing in Corticostriatal Circuits. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The major tenets of beat-frequency/coincidence-detection models of reward-related timing are reviewed in light of recent behavioral and neurobiological findings. This includes the emphasis on a core timing network embedded in the motor system that is comprised of a corticothalamic-basal ganglia circuit. Therein, a central hub provides timing pulses (i.e., predictive signals) to the entire brain, including a set of distributed satellite regions in the cerebellum, cortex, amygdala, and hippocampus that are selectively engaged in timing in a manner that is more dependent upon the specific sensory, behavioral, and contextual requirements of the task. Oscillation/coincidence-detection models also emphasize the importance of a tuned ‘perception’ learning and memory system whereby target durations are detected by striatal networks of medium spiny neurons (MSNs) through the coincidental activation of different neural populations, typically utilizing patterns of oscillatory input from the cortex and thalamus or derivations thereof (e.g., population coding) as a time base. The measure of success of beat-frequency/coincidence-detection accounts, such as the Striatal Beat-Frequency model of reward-related timing (SBF), is their ability to accommodate new experimental findings while maintaining their original framework, thereby making testable experimental predictions concerning diagnosis and treatment of issues related to a variety of dopamine-dependent basal ganglia disorders, including Huntington’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Bin Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhuanghua Shi
- Department of Psychology, Ludwig Maximilian University of Munich, 80802 Munich, Germany
| | - Yaxin Wang
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Bromazepam increases the error of the time interval judgments and modulates the EEG alpha asymmetry during time estimation. Conscious Cogn 2022; 100:103317. [PMID: 35364385 DOI: 10.1016/j.concog.2022.103317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
AIM This study investigated the bromazepam effects in male subjects during the time estimation performance and EEG alpha asymmetry in electrodes associated with the frontal and motor cortex. MATERIAL AND METHODS This is a double-blind, crossover study with a sample of 32 healthy adults under control (placebo) vs. experimental (bromazepam) during visual time-estimation task in combination with electroencephalographic analysis. RESULTS The results demonstrated that the bromazepam increased the relative error in the 4 s, 7 s, and 9 s intervals (p = 0.001). In addition, oral bromazepam modulated the EEG alpha asymmetry in cortical areas during the time judgment (p ≤ 0.025). CONCLUSION The bromazepam decreases the precision of time estimation judgments and modulates the EEG alpha asymmetry, with greater left hemispheric dominance during time perception. Our findings suggest that bromazepam influences internal clock synchronization via the modulation of GABAergic receptors, strongly relating to attention, conscious perception, and behavioral performance.
Collapse
|
7
|
Espinoza-Monroy M, de Lafuente V. Discrimination of Regular and Irregular Rhythms Explained by a Time Difference Accumulation Model. Neuroscience 2021; 459:16-26. [PMID: 33549694 DOI: 10.1016/j.neuroscience.2021.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Perceiving the temporal regularity in a sequence of repetitive sensory events facilitates the preparation and execution of relevant behaviors with tight temporal constraints. How we estimate temporal regularity from repeating patterns of sensory stimuli is not completely understood. We developed a decision-making task in which participants had to decide whether a train of visual, auditory, or tactile pulses, had a regular or an irregular temporal pattern. We tested the hypothesis that subjects categorize stimuli as irregular by accumulating the time differences between the predicted and observed times of sensory pulses defining a temporal rhythm. Results suggest that instead of waiting for a single large temporal deviation, participants accumulate timing-error signals and judge a pattern as irregular when the amount of evidence reaches a decision threshold. Model fits of bounded integration showed that this accumulation occurs with negligible leak of evidence. Consistent with previous findings, we show that participants perform better when evaluating the regularity of auditory pulses, as compared with visual or tactile stimuli. Our results suggest that temporal regularity is estimated by comparing expected and measured pulse onset times, and that each prediction error is accumulated towards a threshold to generate a behavioral choice.
Collapse
Affiliation(s)
- Marisol Espinoza-Monroy
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, Mexico
| | - Victor de Lafuente
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, Mexico.
| |
Collapse
|
8
|
Aft T, Oprisan SA, Buhusi CV. Is the scalar property of interval timing preserved after hippocampus lesions? J Theor Biol 2021; 516:110605. [PMID: 33508325 PMCID: PMC7980776 DOI: 10.1016/j.jtbi.2021.110605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/28/2022]
Abstract
Time perception is fundamental for decision-making, adaptation, and survival. In the peak-interval (PI) paradigm, one of the critical features of time perception is its scale invariance, i.e., the error in time estimation increases linearly with the to-be-timed interval. Brain lesions can profoundly alter time perception, but do they also change its scalar property? In particular, hippocampus (HPC) lesions affect the memory of the reinforced durations. Experiments found that ventral hippocampus (vHPC) lesions shift the perceived durations to longer values while dorsal hippocampus (dHPC) lesions produce opposite effects. Here we used our implementation of the Striatal Beat Frequency (SBFML) model with biophysically realistic Morris-Lecar (ML) model neurons and a topological map of HPC memory to predict analytically and verify numerically the effect of HPC lesions on scalar property. We found that scalar property still holds after both vHPC and dHPC lesions in our SBFML-HPC network simulation. Our numerical results show that PI durations are shifted in the correct direction and match the experimental results. In our simulations, the relative peak shift of the behavioral response curve is controlled by two factors: (1) the lesion size, and (2) the cellular-level memory variance of the temporal durations stored in the HPC. The coefficient of variance (CV) of the behavioral response curve remained constant over the tested durations of PI procedure, which suggests that scalar property is not affected by HPC lesions.
Collapse
Affiliation(s)
- Tristan Aft
- Department of Physics and Astronomy, College of Charleston, United States
| | - Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, United States
| | | |
Collapse
|
9
|
Sanabria F. Internal-Clock Models and Misguided Views of Mechanistic Explanations: A Reply to Eckard & Lattal (2020). Perspect Behav Sci 2021; 43:779-790. [PMID: 33381688 DOI: 10.1007/s40614-020-00268-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 11/27/2022] Open
Abstract
Eckard and Lattal's Perspectives on Behavior Science, 43(1), 5-19 (2020) critique of internal clock (IC) mechanisms is based on narrow concepts of clocks, of their internality, of their mechanistic nature, and of scientific explanations in general. This reply broadens these concepts to characterize all timekeeping objects-physical and otherwise-as clocks, all intrinsic properties of such objects as internal to them, and all simulatable explanations of such properties as mechanisms. Eckard and Lattal's critique reflects a restrictive billiard-ball view of causation, in which environmental manipulations and behavioral effects are connected by a single chain of contiguous events. In contrast, this reply offers a more inclusive stochastic view of causation, in which environmental manipulations are probabilistically connected to behavioral effects. From either view of causation, computational ICs are hypothetical and unobservable, but their heuristic value and parsimony can only be appreciated from a stochastic view of causation. Billiard-ball and stochastic views have contrasting implications for potential explanations of interval timing. As illustrated by accounts of the variability in start times in fixed-interval schedules of reinforcement, of the two views of causality examined, only the stochastic account supports falsifiable predictions beyond simple replications. It is thus not surprising that the experimental analysis of behavior has progressively adopted a stochastic view of causation, and that it has reaped its benefits. This reply invites experimental behavior analysts to continue on that trajectory.
Collapse
Affiliation(s)
- Federico Sanabria
- Department of Psychology, Arizona State University, PO Box 871104, Tempe, AZ 85287-1104 USA
| |
Collapse
|
10
|
Matthews AR, Buhusi M, Buhusi CV. Blockade of Catecholamine Reuptake in the Prelimbic Cortex Decreases Top-down Attentional Control in Response to Novel, but Not Familiar Appetitive Distracters, within a Timing Paradigm. NEUROSCI 2020; 1:99-114. [PMID: 35036990 PMCID: PMC8758100 DOI: 10.3390/neurosci1020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Emotionally charged distracters delay timing behavior. Increasing catecholamine levels within the prelimbic cortex has beneficial effects on timing by decreasing the delay after aversive distracters. We examined whether increasing catecholamine levels within the prelimbic cortex also protects against the deleterious timing delays caused by novel distracters or by familiar appetitive distracters. Rats were trained in a peak-interval procedure and tested in trials with either a novel (unreinforced) distracter, a familiar appetitive (food-reinforced) distracter, or no distracter after being locally infused within the prelimbic cortex with catecholamine reuptake blocker nomifensine. Prelimbic infusion of nomifensine did not alter timing accuracy and precision. However, it increased the delay caused by novel distracters in an inverted-U dose-dependent manner, while being ineffective for appetitive distracters. Together with previous data, these results suggest that catecholaminergic modulation of prelimbic top-down attentional control of interval timing varies with distracter’s valence: prelimbic catecholamines increase attentional control when presented with familiar aversive distracters, have no effect on familiar neutral or familiar appetitive distracters, and decrease it when presented with novel distracters. These findings detail complex interactions between catecholaminergic modulation of attention to timing and nontemporal properties of stimuli, which should be considered when developing therapeutic methods for attentional or affective disorders.
Collapse
|
11
|
Abstract
This study presents a computational model to reproduce the biological dynamics of "listening to music." A biologically plausible model of periodicity pitch detection is proposed and simulated. Periodicity pitch is computed across a range of the auditory spectrum. Periodicity pitch is detected from subsets of activated auditory nerve fibers (ANFs). These activate connected model octopus cells, which trigger model neurons detecting onsets and offsets; thence model interval-tuned neurons are innervated at the right interval times; and finally, a set of common interval-detecting neurons indicate pitch. Octopus cells rhythmically spike with the pitch periodicity of the sound. Batteries of interval-tuned neurons stopwatch-like measure the inter-spike intervals of the octopus cells by coding interval durations as first spike latencies (FSLs). The FSL-triggered spikes synchronously coincide through a monolayer spiking neural network at the corresponding receiver pitch neurons.
Collapse
Affiliation(s)
- Frank Klefenz
- Fraunhofer Institute for Digital Media Technology IDMT, Ilmenau, Germany
| | - Tamas Harczos
- Fraunhofer Institute for Digital Media Technology IDMT, Ilmenau, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- audifon GmbH & Co. KG, Kölleda, Germany
| |
Collapse
|
12
|
Yousefzadeh SA, Hesslow G, Shumyatsky GP, Meck WH. Internal Clocks, mGluR7 and Microtubules: A Primer for the Molecular Encoding of Target Durations in Cerebellar Purkinje Cells and Striatal Medium Spiny Neurons. Front Mol Neurosci 2020; 12:321. [PMID: 31998074 PMCID: PMC6965020 DOI: 10.3389/fnmol.2019.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
The majority of studies in the field of timing and time perception have generally focused on sub- and supra-second time scales, specific behavioral processes, and/or discrete neuronal circuits. In an attempt to find common elements of interval timing from a broader perspective, we review the literature and highlight the need for cell and molecular studies that can delineate the neural mechanisms underlying temporal processing. Moreover, given the recent attention to the function of microtubule proteins and their potential contributions to learning and memory consolidation/re-consolidation, we propose that these proteins play key roles in coding temporal information in cerebellar Purkinje cells (PCs) and striatal medium spiny neurons (MSNs). The presence of microtubules at relevant neuronal sites, as well as their adaptability, dynamic structure, and longevity, makes them a suitable candidate for neural plasticity at both intra- and inter-cellular levels. As a consequence, microtubules appear capable of maintaining a temporal code or engram and thereby regulate the firing patterns of PCs and MSNs known to be involved in interval timing. This proposed mechanism would control the storage of temporal information triggered by postsynaptic activation of mGluR7. This, in turn, leads to alterations in microtubule dynamics through a "read-write" memory process involving alterations in microtubule dynamics and their hexagonal lattice structures involved in the molecular basis of temporal memory.
Collapse
Affiliation(s)
- S. Aryana Yousefzadeh
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Germund Hesslow
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Snowden AW, Buhusi CV. Neural Correlates of Interval Timing Deficits in Schizophrenia. Front Hum Neurosci 2019; 13:9. [PMID: 30760991 PMCID: PMC6362255 DOI: 10.3389/fnhum.2019.00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Previous research has shown that schizophrenia (SZ) patients exhibit impairments in interval timing. The cause of timing impairments in SZ remains unknown but may be explained by a dysfunction in the fronto-striatal circuits. Although the current literature includes extensive behavioral data on timing impairments, there is limited focus on the neural correlates of timing in SZ. The neuroimaging literature included in the current review reports hypoactivation in the dorsal-lateral prefrontal cortex (DLPFC), supplementary motor area (SMA) and the basal ganglia (BG). Timing deficits and deficits in attention and working memory (WM) in SZ are likely due to a dysfunction of dopamine (DA) and gamma-aminobutyric acid (GABA) neurotransmission in the cortico-striatal-thalamo-cortical circuits, which are highly implicated in executive functioning and motor preparation.
Collapse
Affiliation(s)
- Ariel W Snowden
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| |
Collapse
|
14
|
Oprisan SA, Buhusi M, Buhusi CV. A Population-Based Model of the Temporal Memory in the Hippocampus. Front Neurosci 2018; 12:521. [PMID: 30131668 PMCID: PMC6090536 DOI: 10.3389/fnins.2018.00521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Abstract
Spatial and temporal dimensions are fundamental for orientation, adaptation, and survival of organisms. Hippocampus has been identified as the main neuroanatomical structure involved both in space and time perception and their internal representation. Dorsal hippocampus lesions showed a leftward shift (toward shorter durations) in peak-interval procedures, whereas ventral lesions shifted the peak time toward longer durations. We previously explained hippocampus lesion experimental findings by assuming a topological map model of the hippocampus with shorter durations memorized ventrally and longer durations more dorsal. Here we suggested a possible connection between the abstract topological maps model of the hippocampus that stored reinforcement times in a spatially ordered memory register and the "time cells" of the hippocampus. In this new model, the time cells provide a uniformly distributed time basis that covers the entire to-be-learned temporal duration. We hypothesized that the topological map of the hippocampus stores the weights that reflect the contribution of each time cell to the average temporal field that determines the behavioral response. The temporal distance between the to-be-learned criterion time and the time of the peak activity of each time cell provides the error signal that determines the corresponding weight correction. Long-term potentiation/depression could enhance/weaken the weights associated to the time cells that peak closer/farther to the criterion time. A coincidence detector mechanism, possibly under the control of the dopaminergic system, could be involved in our suggested error minimization and learning algorithm.
Collapse
Affiliation(s)
- Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| |
Collapse
|
15
|
Buhusi CV, Reyes MB, Gathers CA, Oprisan SA, Buhusi M. Inactivation of the Medial-Prefrontal Cortex Impairs Interval Timing Precision, but Not Timing Accuracy or Scalar Timing in a Peak-Interval Procedure in Rats. Front Integr Neurosci 2018; 12:20. [PMID: 29988576 PMCID: PMC6026933 DOI: 10.3389/fnint.2018.00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022] Open
Abstract
Motor sequence learning, planning and execution of goal-directed behaviors, and decision making rely on accurate time estimation and production of durations in the seconds-to-minutes range. The pathways involved in planning and execution of goal-directed behaviors include cortico-striato-thalamo-cortical circuitry modulated by dopaminergic inputs. A critical feature of interval timing is its scalar property, by which the precision of timing is proportional to the timed duration. We examined the role of medial prefrontal cortex (mPFC) in timing by evaluating the effect of its reversible inactivation on timing accuracy, timing precision and scalar timing. Rats were trained to time two durations in a peak-interval (PI) procedure. Reversible mPFC inactivation using GABA agonist muscimol resulted in decreased timing precision, with no effect on timing accuracy and scalar timing. These results are partly at odds with studies suggesting that ramping prefrontal activity is crucial to timing but closely match simulations with the Striatal Beat Frequency (SBF) model proposing that timing is coded by the coincidental activation of striatal neurons by cortical inputs. Computer simulations indicate that in SBF, gradual inactivation of cortical inputs results in a gradual decrease in timing precision with preservation of timing accuracy and scalar timing. Further studies are needed to differentiate between timing models based on coincidence detection and timing models based on ramping mPFC activity, and clarify whether mPFC is specifically involved in timing, or more generally involved in attention, working memory, or response selection/inhibition.
Collapse
Affiliation(s)
- Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, USTAR BioInnovations Center, Utah State University, Logan, UT, United States.,Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
| | - Marcelo B Reyes
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
| | - Cody-Aaron Gathers
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
| | - Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, USTAR BioInnovations Center, Utah State University, Logan, UT, United States.,Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
16
|
Buhusi CV, Oprisan SA, Buhusi M. Biological and Cognitive Frameworks for a Mental Timeline. Front Neurosci 2018; 12:377. [PMID: 29942247 PMCID: PMC6004392 DOI: 10.3389/fnins.2018.00377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/16/2018] [Indexed: 01/18/2023] Open
Affiliation(s)
- Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, USTAR BioInnovations Center, Utah State University, Logan, UT, United States
| | - Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, USTAR BioInnovations Center, Utah State University, Logan, UT, United States
| |
Collapse
|
17
|
Oprisan SA, Aft T, Buhusi M, Buhusi CV. Scalar timing in memory: A temporal map in the hippocampus. J Theor Biol 2018; 438:133-142. [PMID: 29155279 PMCID: PMC6432786 DOI: 10.1016/j.jtbi.2017.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/19/2017] [Accepted: 11/15/2017] [Indexed: 11/24/2022]
Abstract
Many essential tasks, such as decision making, rate calculation and planning, require accurate timing in the second to minute range. This process, known as interval timing, involves many cortical areas such as the prefrontal cortex, the striatum, and the hippocampus. Although the neurobiological origin and the mechanisms of interval timing are largely unknown, we have developed increasingly accurate mathematical and computational models that can mimic some properties of time perception. The accepted paradigm of temporal durations storage is that the objective elapsed time from the short-term memory is transferred to the reference memory using a multiplicative "memory translation constant" K*. It is believed that K* has a Gaussian distribution due to trial-related variabilities. To understand K* genesis, we hypothesized that the storage of temporal memories follows a topological map in the hippocampus, with longer durations stored towards dorsal hippocampus and shorter durations stored toward ventral hippocampus. We found that selective removal of memory cells in this topological map model shifts the peak-response time in a manner consistent with the current experimental data on the effect of hippocampal lesions on time perception. This opens new avenues for experimental testing of our topological map hypothesis. We found numerically that the relative shift is determined both by the lesion size and its location and we suggested a theoretical estimate for the memory translation constant K*.
Collapse
Affiliation(s)
- Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29624, U.S.A.
| | - Tristan Aft
- Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29624, U.S.A
| | - Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan UT, U.S.A
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan UT, U.S.A
| |
Collapse
|
18
|
Agostino PV, Gatto EM, Cesarini M, Etcheverry JL, Sanguinetti A, Golombek DA. Deficits in temporal processing correlate with clinical progression in Huntington's disease. Acta Neurol Scand 2017; 136:322-329. [PMID: 28052315 DOI: 10.1111/ane.12728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Precise temporal performance is crucial for several complex tasks. Time estimation in the second-to-minutes range-known as interval timing-involves the interaction of the basal ganglia and the prefrontal cortex via dopaminergic-glutamatergic pathways. Patients with Huntington's disease (HD) present deficits in cognitive and motor functions that require fine control of temporal processing. The objective of the present work was to assess temporal cognition through a peak-interval time (PI) production task in patients with HD and its potential correlation with the Unified Huntington's Disease Rating Scale (UHDRS). MATERIALS AND METHODS Patients with molecular diagnosis of HD and controls matched by age, sex and educational level (n=18/group) were tested for interval timing in short- (3 seconds), medium- (6 seconds) and long (12 seconds)-duration stimuli. RESULTS Significant differences were observed in the PI task, with worse performance in HD compared to controls. Patients underestimated real time (left-shifted Peak location) for 6- and 12-second intervals (P<.05) and presented decreased temporal precision for all the intervals evaluated (P<.01). Importantly, a significant correlation was found between time performance and the UHDRS (P<.01). Patients' responses also deviated from the scalar property. CONCLUSIONS Our results contribute to support that timing functions are impaired in HD in correlation with clinical deterioration. Recordings of cognitive performance related to timing could be a potential useful tool to measure the neurodegenerative progression of movement disorder-related pathologies.
Collapse
Affiliation(s)
- P. V. Agostino
- Department of Science and Technology; National University of Quilmes/CONICET; Bernal Buenos Aires Argentina
| | - E. M. Gatto
- Instituto de Neurociencias de Buenos Aires; INEBA; Bernal Buenos Aires Argentina
| | - M. Cesarini
- Instituto de Neurociencias de Buenos Aires; INEBA; Bernal Buenos Aires Argentina
| | - J. L. Etcheverry
- Instituto de Neurociencias de Buenos Aires; INEBA; Bernal Buenos Aires Argentina
| | - A. Sanguinetti
- Instituto de Neurociencias de Buenos Aires; INEBA; Bernal Buenos Aires Argentina
| | - D. A. Golombek
- Department of Science and Technology; National University of Quilmes/CONICET; Bernal Buenos Aires Argentina
| |
Collapse
|
19
|
Manohar SG, Pertzov Y, Husain M. Short-term memory for spatial, sequential and duration information. Curr Opin Behav Sci 2017; 17:20-26. [PMID: 29167809 PMCID: PMC5678495 DOI: 10.1016/j.cobeha.2017.05.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Analog report methods provide novel insights on STM for space and time. Space and time may be used to bind features in STM. The hippocampus is involved in object-location binding in STM.
Space and time appear to play key roles in the way that information is organized in short-term memory (STM). Some argue that they are crucial contexts within which other stored features are embedded, allowing binding of information that belongs together within STM. Here we review recent behavioral, neurophysiological and imaging studies that have sought to investigate the nature of spatial, sequential and duration representations in STM, and how these might break down in disease. Findings from these studies point to an important role of the hippocampus and other medial temporal lobe structures in aspects of STM, challenging conventional accounts of involvement of these regions in only long-term memory.
Collapse
Affiliation(s)
- Sanjay G Manohar
- Dept Experimental Psychology and Nuffield Dept of Clinical Neuroscience, University of Oxford, United Kingdom
| | - Yoni Pertzov
- Dept of Psychology, The Hebrew University of Jerusalem, Israel
| | - Masud Husain
- Dept Experimental Psychology and Nuffield Dept of Clinical Neuroscience, University of Oxford, United Kingdom
| |
Collapse
|
20
|
Buhusi M, Olsen K, Buhusi CV. Increased temporal discounting after chronic stress in CHL1-deficient mice is reversed by 5-HT2C agonist Ro 60-0175. Neuroscience 2017; 357:110-118. [PMID: 28583411 DOI: 10.1016/j.neuroscience.2017.05.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder in which impaired decision-making and goal-directed behaviors are core features. One of the genes associated with schizophrenia is the Close Homolog of L1 (CHL1); CHL1-deficient mice are considered a model of schizophrenia-like deficits, including sensorimotor gating, interval timing and spatial memory impairments. Here we investigated temporal discounting in CHL1-deficient (KO) mice and their wild-type littermates. Although no discounting differences were found under baseline conditions, CHL1-KO mice showed increased impulsive choice following chronic unpredictable stress (fewer % larger-later choices, and reduced area under the discounting curve). Stressed CHL1-KO mice also showed decreased neuronal activation (number of cFos positive neurons) in the discounting task in the prelimbic cortex and dorsal striatum, areas thought to be part of executive and temporal processing circuits. Impulsive choice alterations were reversed by the 5-HT2C agonist Ro 60-0175. Our results provide evidence for a gene x environment, double-hit model of stress-related decision-making impairments, and identify CHL1-deficient mice as a mouse model for these deficits in regard to schizophrenia-like phenotypes.
Collapse
Affiliation(s)
- Mona Buhusi
- Utah State University, Interdisciplinary Program in Neuroscience, Dept. Psychology, 2810 Old Main Hill, Logan, UT 84322, United States.
| | - Kaitlin Olsen
- Utah State University, Interdisciplinary Program in Neuroscience, Dept. Psychology, 2810 Old Main Hill, Logan, UT 84322, United States
| | - Catalin V Buhusi
- Utah State University, Interdisciplinary Program in Neuroscience, Dept. Psychology, 2810 Old Main Hill, Logan, UT 84322, United States
| |
Collapse
|
21
|
Buhusi M, Bartlett MJ, Buhusi CV. Sex differences in interval timing and attention to time in C57Bl/6J mice. Behav Brain Res 2017; 324:96-99. [PMID: 28212945 DOI: 10.1016/j.bbr.2017.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 01/27/2023]
Abstract
Interval timing is crucial for decision-making and motor control and is impaired in many neuropsychiatric disorders. Previous studies examined timing in various strains or genetically-altered mice, but not in parallel in male and female mice in the same experimental setting. We investigated timing and attention to time in male and female C57Bl/6J mice, when presented with gaps in the timed stimulus, novel auditory distracters presented during the un-interrupted timed stimulus, and gap+distracter combinations. No sex differences were found in regard to timing accuracy and precision. However, presentation of the gap+distracter combination over-reset timing in males but had a much smaller effect in females. The over-reset strategy was reported previously with emotional distracters (e.g., previously paired with footshock) but not with neutral distracters. These results reveal sex differences in attentional gating/switching or working memory for time.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan, UT, United States.
| | - Mitchell J Bartlett
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan, UT, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, USTAR BioInnovations Center, Dept. Psychology, Utah State University, Logan, UT, United States
| |
Collapse
|