1
|
Golmohamadian M, Faraji M, Fallah F, Sharifizadeh F, Ebrahimpour R. Flexibility in choosing decision policies in gathering discrete evidence over time. PLoS One 2025; 20:e0316320. [PMID: 39808606 PMCID: PMC11731777 DOI: 10.1371/journal.pone.0316320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
The brain can remarkably adapt its decision-making process to suit the dynamic environment and diverse aims and demands. The brain's flexibility can be classified into three categories: flexibility in choosing solutions, decision policies, and actions. We employ two experiments to explore flexibility in decision policy: a visual object categorization task and an auditory object categorization task. Both tasks required participants to accumulate discrete evidence over time, with the only difference being the sensory state of the stimuli. We aim to investigate how the brain demonstrates flexibility in selecting decision policies in different sensory contexts when the solution and action remain the same. Our results indicate that the decision policy of the brain in integrating information is independent of inter-pulse interval across these two tasks. However, the decision policy based on how the brain ranks the first and second pulse of evidence changes flexibly. We show that the sequence of pulses does not affect the choice accuracy in the auditory mode. However, in the visual mode, the first pulse had the larger leverage on decisions. Our research underscores the importance of incorporating diverse contexts to improve our understanding of the brain's flexibility in real-world decision-making.
Collapse
Affiliation(s)
- Masoumeh Golmohamadian
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Science (IPM), Tehran, Iran
| | - Mehrbod Faraji
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Science (IPM), Tehran, Iran
- Department of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Fatemeh Fallah
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Science (IPM), Tehran, Iran
| | - Fatemeh Sharifizadeh
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Science (IPM), Tehran, Iran
| | - Reza Ebrahimpour
- Center for Cognitive Science, Institute for Convergence Science and Technology (ICST), Sharif University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Viswanathan P, Stein AM, Nieder A. Sequential neuronal processing of number values, abstract decision, and action in the primate prefrontal cortex. PLoS Biol 2024; 22:e3002520. [PMID: 38364194 PMCID: PMC10871863 DOI: 10.1371/journal.pbio.3002520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Decision-making requires processing of sensory information, comparing the gathered evidence to make a judgment, and performing the action to communicate it. How neuronal representations transform during this cascade of representations remains a matter of debate. Here, we studied the succession of neuronal representations in the primate prefrontal cortex (PFC). We trained monkeys to judge whether a pair of sequentially presented displays had the same number of items. We used a combination of single neuron and population-level analyses and discovered a sequential transformation of represented information with trial progression. While numerical values were initially represented with high precision and in conjunction with detailed information such as order, the decision was encoded in a low-dimensional subspace of neural activity. This decision encoding was invariant to both retrospective numerical values and prospective motor plans, representing only the binary judgment of "same number" versus "different number," thus facilitating the generalization of decisions to novel number pairs. We conclude that this transformation of neuronal codes within the prefrontal cortex supports cognitive flexibility and generalizability of decisions to new conditions.
Collapse
Affiliation(s)
- Pooja Viswanathan
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Anna M. Stein
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Latimer KW, Freedman DJ. Low-dimensional encoding of decisions in parietal cortex reflects long-term training history. Nat Commun 2023; 14:1010. [PMID: 36823109 PMCID: PMC9950136 DOI: 10.1038/s41467-023-36554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Neurons in parietal cortex exhibit task-related activity during decision-making tasks. However, it remains unclear how long-term training to perform different tasks over months or even years shapes neural computations and representations. We examine lateral intraparietal area (LIP) responses during a visual motion delayed-match-to-category task. We consider two pairs of male macaque monkeys with different training histories: one trained only on the categorization task, and another first trained to perform fine motion-direction discrimination (i.e., pretrained). We introduce a novel analytical approach-generalized multilinear models-to quantify low-dimensional, task-relevant components in population activity. During the categorization task, we found stronger cosine-like motion-direction tuning in the pretrained monkeys than in the category-only monkeys, and that the pretrained monkeys' performance depended more heavily on fine discrimination between sample and test stimuli. These results suggest that sensory representations in LIP depend on the sequence of tasks that the animals have learned, underscoring the importance of considering training history in studies with complex behavioral tasks.
Collapse
Affiliation(s)
- Kenneth W Latimer
- Department of Neurobiology, University of Chicago, Chicago, IL, USA.
| | - David J Freedman
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Abstract
Neural mechanisms of perceptual decision making have been extensively studied in experimental settings that mimic stable environments with repeating stimuli, fixed rules, and payoffs. In contrast, we live in an ever-changing environment and have varying goals and behavioral demands. To accommodate variability, our brain flexibly adjusts decision-making processes depending on context. Here, we review a growing body of research that explores the neural mechanisms underlying this flexibility. We highlight diverse forms of context dependency in decision making implemented through a variety of neural computations. Context-dependent neural activity is observed in a distributed network of brain structures, including posterior parietal, sensory, motor, and subcortical regions, as well as the prefrontal areas classically implicated in cognitive control. We propose that investigating the distributed network underlying flexible decisions is key to advancing our understanding and discuss a path forward for experimental and theoretical investigations.
Collapse
Affiliation(s)
- Gouki Okazawa
- Center for Neural Science, New York University, New York, NY, USA;
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, NY, USA;
- Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
5
|
Urai AE, Doiron B, Leifer AM, Churchland AK. Large-scale neural recordings call for new insights to link brain and behavior. Nat Neurosci 2022; 25:11-19. [PMID: 34980926 DOI: 10.1038/s41593-021-00980-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
Neuroscientists today can measure activity from more neurons than ever before, and are facing the challenge of connecting these brain-wide neural recordings to computation and behavior. In the present review, we first describe emerging tools and technologies being used to probe large-scale brain activity and new approaches to characterize behavior in the context of such measurements. We next highlight insights obtained from large-scale neural recordings in diverse model systems, and argue that some of these pose a challenge to traditional theoretical frameworks. Finally, we elaborate on existing modeling frameworks to interpret these data, and argue that the interpretation of brain-wide neural recordings calls for new theoretical approaches that may depend on the desired level of understanding. These advances in both neural recordings and theory development will pave the way for critical advances in our understanding of the brain.
Collapse
Affiliation(s)
- Anne E Urai
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cognitive Psychology Unit, Leiden University, Leiden, The Netherlands
| | | | | | - Anne K Churchland
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Ramirez AD, Aksay ERF. Ramp-to-threshold dynamics in a hindbrain population controls the timing of spontaneous saccades. Nat Commun 2021; 12:4145. [PMID: 34230474 PMCID: PMC8260785 DOI: 10.1038/s41467-021-24336-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Organisms have the capacity to make decisions based solely on internal drives. However, it is unclear how neural circuits form decisions in the absence of sensory stimuli. Here we provide a comprehensive map of the activity patterns underlying the generation of saccades made in the absence of visual stimuli. We perform calcium imaging in the larval zebrafish to discover a range of responses surrounding spontaneous saccades, from cells that display tonic discharge only during fixations to neurons whose activity rises in advance of saccades by multiple seconds. When we lesion cells in these populations we find that ablation of neurons with pre-saccadic rise delays saccade initiation. We analyze spontaneous saccade initiation using a ramp-to-threshold model and are able to predict the times of upcoming saccades using pre-saccadic activity. These findings suggest that ramping of neuronal activity to a bound is a critical component of self-initiated saccadic movements.
Collapse
Affiliation(s)
- Alexandro D Ramirez
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| | - Emre R F Aksay
- Institute for Computational Biomedicine and the Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Booras A, Stevenson T, McCormack CN, Rhoads ME, Hanks TD. Change point detection with multiple alternatives reveals parallel evaluation of the same stream of evidence along distinct timescales. Sci Rep 2021; 11:13098. [PMID: 34162943 PMCID: PMC8222317 DOI: 10.1038/s41598-021-92470-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
In order to behave appropriately in a rapidly changing world, individuals must be able to detect when changes occur in that environment. However, at any given moment, there are a multitude of potential changes of behavioral significance that could occur. Here we investigate how knowledge about the space of possible changes affects human change point detection. We used a stochastic auditory change point detection task that allowed model-free and model-based characterization of the decision process people employ. We found that subjects can simultaneously apply distinct timescales of evidence evaluation to the same stream of evidence when there are multiple types of changes possible. Informative cues that specified the nature of the change led to improved accuracy for change point detection through mechanisms involving both the timescales of evidence evaluation and adjustments of decision bounds. These results establish three important capacities of information processing for decision making that any proposed neural mechanism of evidence evaluation must be able to support: the ability to simultaneously employ multiple timescales of evidence evaluation, the ability to rapidly adjust those timescales, and the ability to modify the amount of information required to make a decision in the context of flexible timescales.
Collapse
Affiliation(s)
- Alexa Booras
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA
| | - Tanner Stevenson
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA
| | - Connor N. McCormack
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA
| | - Marie E. Rhoads
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Neuroscience, University of California Los Angeles, Los Angeles, CA USA
| | - Timothy D. Hanks
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Neurology, University of California Davis, Sacramento, CA USA
| |
Collapse
|
8
|
Harun R, Jun E, Park HH, Ganupuru P, Goldring AB, Hanks TD. Timescales of Evidence Evaluation for Decision Making and Associated Confidence Judgments Are Adapted to Task Demands. Front Neurosci 2020; 14:826. [PMID: 32903672 PMCID: PMC7438826 DOI: 10.3389/fnins.2020.00826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/15/2020] [Indexed: 01/29/2023] Open
Abstract
Decision making often involves choosing actions based on relevant evidence. This can benefit from focussing evidence evaluation on the timescale of greatest relevance based on the situation. Here, we use an auditory change detection task to determine how people adjust their timescale of evidence evaluation depending on task demands for detecting changes in their environment and assessing their internal confidence in those decisions. We confirm previous results that people adopt shorter timescales of evidence evaluation for detecting changes in contexts with shorter signal durations, while bolstering those results with model-free analyses not previously used and extending the results to the auditory domain. We also extend these results to show that in contexts with shorter signal durations, people also adopt correspondingly shorter timescales of evidence evaluation for assessing confidence in their decision about detecting a change. These results provide important insights into adaptability and flexible control of evidence evaluation for decision making.
Collapse
Affiliation(s)
- Rashed Harun
- Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Elizabeth Jun
- Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Heui Hye Park
- Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Preetham Ganupuru
- Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Adam B Goldring
- Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Timothy D Hanks
- Department of Neurology and Center for Neuroscience, University of California, Davis, Davis, CA, United States
| |
Collapse
|
9
|
Wang TY, Liu J, Yao H. Control of adaptive action selection by secondary motor cortex during flexible visual categorization. eLife 2020; 9:54474. [PMID: 32579113 PMCID: PMC7343391 DOI: 10.7554/elife.54474] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/24/2020] [Indexed: 01/07/2023] Open
Abstract
Adaptive action selection during stimulus categorization is an important feature of flexible behavior. To examine neural mechanism underlying this process, we trained mice to categorize the spatial frequencies of visual stimuli according to a boundary that changed between blocks of trials in a session. Using a model with a dynamic decision criterion, we found that sensory history was important for adaptive action selection after the switch of boundary. Bilateral inactivation of the secondary motor cortex (M2) impaired adaptive action selection by reducing the behavioral influence of sensory history. Electrophysiological recordings showed that M2 neurons carried more information about upcoming choice and previous sensory stimuli when sensorimotor association was being remapped than when it was stable. Thus, M2 causally contributes to flexible action selection during stimulus categorization, with the representations of upcoming choice and sensory history regulated by the demand to remap stimulus-action association.
Collapse
Affiliation(s)
- Tian-Yi Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
10
|
Ter Wal M, Platonov A, Cardellicchio P, Pelliccia V, LoRusso G, Sartori I, Avanzini P, Orban GA, Tiesinga PHE. Human stereoEEG recordings reveal network dynamics of decision-making in a rule-switching task. Nat Commun 2020; 11:3075. [PMID: 32555174 PMCID: PMC7300004 DOI: 10.1038/s41467-020-16854-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/26/2020] [Indexed: 01/17/2023] Open
Abstract
The processing steps that lead up to a decision, i.e., the transformation of sensory evidence into motor output, are not fully understood. Here, we combine stereoEEG recordings from the human cortex, with single-lead and time-resolved decoding, using a wide range of temporal frequencies, to characterize decision processing during a rule-switching task. Our data reveal the contribution of rostral inferior parietal lobule (IPL) regions, in particular PFt, and the parietal opercular regions in decision processing and demonstrate that the network representing the decision is common to both task rules. We reconstruct the sequence in which regions engage in decision processing on single trials, thereby providing a detailed picture of the network dynamics involved in decision-making. The reconstructed timeline suggests that the supramarginal gyrus in IPL links decision regions in prefrontal cortex with premotor regions, where the motor plan for the response is elaborated.
Collapse
Affiliation(s)
- Marije Ter Wal
- Department of Neuroinformatics, Donders Institute, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
- School of Psychology, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Artem Platonov
- Department of Medicine and Surgery, University of Parma, Via Volturno 39E, 43125, Parma, Italy
| | - Pasquale Cardellicchio
- Department of Medicine and Surgery, University of Parma, Via Volturno 39E, 43125, Parma, Italy
| | - Veronica Pelliccia
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Ospedale Ca'Granda Niguarda, Piazza dell'Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Giorgio LoRusso
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Ospedale Ca'Granda Niguarda, Piazza dell'Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Ivana Sartori
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Ospedale Ca'Granda Niguarda, Piazza dell'Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, CNR, via Volturno 39E, 43125, Parma, Italy
| | - Guy A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39E, 43125, Parma, Italy
| | - Paul H E Tiesinga
- Department of Neuroinformatics, Donders Institute, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Cerebellar Neurodynamics Predict Decision Timing and Outcome on the Single-Trial Level. Cell 2020; 180:536-551.e17. [PMID: 31955849 DOI: 10.1016/j.cell.2019.12.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/28/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.
Collapse
|
12
|
Nakajima M, Schmitt LI. Understanding the circuit basis of cognitive functions using mouse models. Neurosci Res 2019; 152:44-58. [PMID: 31857115 DOI: 10.1016/j.neures.2019.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/01/2019] [Accepted: 12/09/2019] [Indexed: 01/13/2023]
Abstract
Understanding how cognitive functions arise from computations occurring in the brain requires the ability to measure and perturb neural activity while the relevant circuits are engaged for specific cognitive processes. Rapid technical advances have led to the development of new approaches to transiently activate and suppress neuronal activity as well as to record simultaneously from hundreds to thousands of neurons across multiple brain regions during behavior. To realize the full potential of these approaches for understanding cognition, however, it is critical that behavioral conditions and stimuli are effectively designed to engage the relevant brain networks. Here, we highlight recent innovations that enable this combined approach. In particular, we focus on how to design behavioral experiments that leverage the ever-growing arsenal of technologies for controlling and measuring neural activity in order to understand cognitive functions.
Collapse
Affiliation(s)
- Miho Nakajima
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - L Ian Schmitt
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Brain Science, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
13
|
Shevinsky CA, Reinagel P. The Interaction Between Elapsed Time and Decision Accuracy Differs Between Humans and Rats. Front Neurosci 2019; 13:1211. [PMID: 31803002 PMCID: PMC6877602 DOI: 10.3389/fnins.2019.01211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
A stochastic visual motion discrimination task is widely used to study rapid decision-making in humans and animals. Among trials of the same sensory difficulty within a block of fixed decision strategy, humans and monkeys are widely reported to make more errors in the individual trials with longer reaction times. This finding has posed a challenge for the drift-diffusion model of sensory decision-making, which in its basic form predicts that errors and correct responses should have the same reaction time distributions. We previously reported that rats also violate this model prediction, but in the opposite direction: for rats, motion discrimination accuracy was highest in the trials with the longest reaction times. To rule out task differences as the cause of our divergent finding in rats, the present study tested humans and rats using the same task and analyzed their data identically. We confirmed that rats' accuracy increased with reaction time, whereas humans' accuracy decreased with reaction time in the same task. These results were further verified using a new temporally local analysis method, ruling out that the observed trend was an artifact of non-stationarity in the data of either species. The main effect was found whether the signal strength (motion coherence) was varied in randomly interleaved trials or held constant within a block. The magnitude of the effects increased with motion coherence. These results provide new constraints useful for refining and discriminating among the many alternative mathematical theories of decision-making.
Collapse
Affiliation(s)
| | - Pamela Reinagel
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
14
|
Waskom ML, Okazawa G, Kiani R. Designing and Interpreting Psychophysical Investigations of Cognition. Neuron 2019; 104:100-112. [PMID: 31600507 PMCID: PMC6855836 DOI: 10.1016/j.neuron.2019.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 11/24/2022]
Abstract
Scientific experimentation depends on the artificial control of natural phenomena. The inaccessibility of cognitive processes to direct manipulation can make such control difficult to realize. Here, we discuss approaches for overcoming this challenge. We advocate the incorporation of experimental techniques from sensory psychophysics into the study of cognitive processes such as decision making and executive control. These techniques include the use of simple parameterized stimuli to precisely manipulate available information and computational models to jointly quantify behavior and neural responses. We illustrate the potential for such techniques to drive theoretical development, and we examine important practical details of how to conduct controlled experiments when using them. Finally, we highlight principles guiding the use of computational models in studying the neural basis of cognition.
Collapse
Affiliation(s)
- Michael L Waskom
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Gouki Okazawa
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Roozbeh Kiani
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA; Neuroscience Institute, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA; Department of Psychology, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
15
|
Ganupuru P, Goldring AB, Harun R, Hanks TD. Flexibility of Timescales of Evidence Evaluation for Decision Making. Curr Biol 2019; 29:2091-2097.e4. [PMID: 31178325 DOI: 10.1016/j.cub.2019.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 04/05/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
To understand the neural mechanisms that support decision making, it is critical to characterize the timescale of evidence evaluation. Recent work has shown that subjects can adaptively adjust the timescale of evidence evaluation across blocks of trials depending on context [1]. However, it's currently unknown if adjustments to evidence evaluation occur online during deliberations based on a single stream of evidence. To examine this question, we employed a change-detection task in which subjects report their level of confidence in judging whether there has been a change in a stochastic auditory stimulus. Using a combination of psychophysical reverse correlation analyses and single-trial behavioral modeling, we compared the time period over which sensory information has leverage on detection report choices versus confidence. We demonstrate that the length of this period differs on separate sets of trials based on what's being reported. Surprisingly, confidence judgments on trials with no detection report are influenced by evidence occurring earlier than the time period of influence for detection reports. Our findings call into question models of decision formation involving static parameters that yield a singular timescale of evidence evaluation and instead suggest that the brain represents and utilizes multiple timescales of evidence evaluation during deliberation.
Collapse
Affiliation(s)
- Preetham Ganupuru
- Department of Neurology and Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, USA
| | - Adam B Goldring
- Department of Neurology and Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, USA
| | - Rashed Harun
- Department of Neurology and Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, USA
| | - Timothy D Hanks
- Department of Neurology and Center for Neuroscience, University of California Davis, 1544 Newton Ct., Davis, CA 95618, USA.
| |
Collapse
|
16
|
Zoltowski DM, Latimer KW, Yates JL, Huk AC, Pillow JW. Discrete Stepping and Nonlinear Ramping Dynamics Underlie Spiking Responses of LIP Neurons during Decision-Making. Neuron 2019; 102:1249-1258.e10. [PMID: 31130330 DOI: 10.1016/j.neuron.2019.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/21/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022]
Abstract
Neurons in LIP exhibit ramping trial-averaged responses during decision-making. Recent work sparked debate over whether single-trial LIP spike trains are better described by discrete "stepping" or continuous "ramping" dynamics. We extended latent dynamical spike train models and used Bayesian model comparison to address this controversy. First, we incorporated non-Poisson spiking into both models and found that more neurons were better described by stepping than ramping, even when conditioned on evidence or choice. Second, we extended the ramping model to include a non-zero baseline and compressive output nonlinearity. This model accounted for roughly as many neurons as the stepping model. However, latent dynamics inferred under this model exhibited high diffusion variance for many neurons, softening the distinction between continuous and discrete dynamics. Results generalized to additional datasets, demonstrating that substantial fractions of neurons are well described by either stepping or nonlinear ramping, which may be less categorically distinct than the original labels implied.
Collapse
Affiliation(s)
- David M Zoltowski
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA.
| | - Kenneth W Latimer
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Jacob L Yates
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Alexander C Huk
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Center for Perceptual Systems, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA; Department of Psychology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
17
|
Ritchie JB, Op de Beeck H. A Varying Role for Abstraction in Models of Category Learning Constructed from Neural Representations in Early Visual Cortex. J Cogn Neurosci 2019; 31:155-173. [DOI: 10.1162/jocn_a_01339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The human capacity for visual categorization is core to how we make sense of the visible world. Although a substantive body of research in cognitive neuroscience has localized this capacity to regions of human visual cortex, relatively few studies have investigated the role of abstraction in how representations for novel object categories are constructed from the neural representation of stimulus dimensions. Using human fMRI coupled with formal modeling of observer behavior, we assess a wide range of categorization models that vary in their level of abstraction from collections of subprototypes to representations of individual exemplars. The category learning tasks range from simple linear and unidimensional category rules to complex crisscross rules that require a nonlinear combination of multiple dimensions. We show that models based on neural responses in primary visual cortex favor a variable, but often limited, extent of abstraction in the construction of representations for novel categories, which differ in degree across tasks and individuals.
Collapse
|
18
|
Visual Evidence Accumulation Guides Decision-Making in Unrestrained Mice. J Neurosci 2018; 38:10143-10155. [PMID: 30322902 DOI: 10.1523/jneurosci.3478-17.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 12/13/2022] Open
Abstract
The ability to manipulate neural activity with precision is an asset in uncovering neural circuits for decision-making. Diverse tools for manipulating neurons are available for mice, but their feasibility remains unclear, especially when decisions require accumulating visual evidence. For example, whether mice' decisions reflect leaky accumulation is unknown, as are the relevant/irrelevant factors that influence decisions. Further, causal circuits for visual evidence accumulation are poorly understood. To address this, we measured decisions in mice judging the fluctuating rate of a flash sequence. An initial analysis (>500,000 trials, 29 male and female mice) demonstrated that information throughout the 1000 ms trial influenced choice, with early information most influential. This suggests that information persists in neural circuits for ∼1000 ms with minimal accumulation leak. Next, in a subset of animals, we probed strategy more extensively and found that although animals were influenced by stimulus rate, they were unable to entirely suppress the influence of stimulus brightness. Finally, we identified anteromedial (AM) visual area via retinotopic mapping and optogenetically inhibited it using JAWS. Light activation biased choices in both injected and uninjected animals, demonstrating that light alone influences behavior. By varying stimulus-response contingency while holding stimulated hemisphere constant, we surmounted this obstacle to demonstrate that AM suppression biases decisions. By leveraging a large dataset to quantitatively characterize decision-making behavior, we establish mice as suitable for neural circuit manipulation studies. Further, by demonstrating that mice accumulate visual evidence, we demonstrate that this strategy for reducing uncertainty in decision-making is used by animals with diverse visual systems.SIGNIFICANCE STATEMENT To connect behaviors to their underlying neural mechanism, a deep understanding of behavioral strategy is needed. This understanding is incomplete for mice. To surmount this, we measured the outcome of >500,000 decisions made by 29 mice trained to judge visual stimuli and performed behavioral/optogenetic manipulations in smaller subsets. Our analyses offer new insights into mice' decision-making strategies and compares them with those of other species. We then disrupted neural activity in a candidate neural structure and examined the effect on decisions. Our findings establish mice as suitable for visual accumulation of evidence decisions. Further, the results highlight similarities in decision-making strategies across very different species.
Collapse
|
19
|
Dunovan K, Wheeler ME. Computational and neural signatures of pre and post-sensory expectation bias in inferior temporal cortex. Sci Rep 2018; 8:13256. [PMID: 30185928 PMCID: PMC6125426 DOI: 10.1038/s41598-018-31678-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/22/2018] [Indexed: 01/18/2023] Open
Abstract
As we gather noisy sensory information from the environment, prior knowledge about the likely cause(s) of sensory input can be leveraged to facilitate perceptual judgments. Here, we investigated the computational and neural manifestation of cued expectations in human subjects as they performed a probabilistic face/house discrimination task in which face and house stimuli were preceded by informative or neutral cues. Drift-diffusion modeling of behavioral data showed that cued expectations biased both the baseline (pre-sensory) and drift-rate (post-sensory) of evidence accumulation. By employing a catch-trial functional MRI design we were able to isolate neural signatures of expectation during pre- and post-sensory stages of decision processing in face- and house-selective areas of inferior temporal cortex (ITC). Cue-evoked timecourses were modulated by cues in a manner consistent with a pre-sensory prediction signal that scaled with probability. Sensory-evoked timecourses resembled a prediction-error signal, greater in magnitude for surprising than expected stimuli. Individual differences in baseline and drift-rate biases showed a clear mapping onto pre- and post-sensory fMRI activity in ITC. These findings highlight the specificity of perceptual expectations and provide new insight into the convergence of top-down and bottom-up signals in ITC and their distinct interactions prior to and during sensory processing.
Collapse
Affiliation(s)
- Kyle Dunovan
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA. .,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mark E Wheeler
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
20
|
Okazawa G, Sha L, Purcell BA, Kiani R. Psychophysical reverse correlation reflects both sensory and decision-making processes. Nat Commun 2018; 9:3479. [PMID: 30154467 PMCID: PMC6113286 DOI: 10.1038/s41467-018-05797-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/20/2018] [Indexed: 11/17/2022] Open
Abstract
Goal-directed behavior depends on both sensory mechanisms that gather information from the outside world and decision-making mechanisms that select appropriate behavior based on that sensory information. Psychophysical reverse correlation is commonly used to quantify how fluctuations of sensory stimuli influence behavior and is generally believed to uncover the spatiotemporal weighting functions of sensory processes. Here we show that reverse correlations also reflect decision-making processes and can deviate significantly from the true sensory filters. Specifically, changes of decision bound and mechanisms of evidence integration systematically alter psychophysical reverse correlations. Similarly, trial-to-trial variability of sensory and motor delays and decision times causes systematic distortions in psychophysical kernels that should not be attributed to sensory mechanisms. We show that ignoring details of the decision-making process results in misinterpretation of reverse correlations, but proper use of these details turns reverse correlation into a powerful method for studying both sensory and decision-making mechanisms.
Collapse
Affiliation(s)
- Gouki Okazawa
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Long Sha
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Braden A Purcell
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Roozbeh Kiani
- Center for Neural Science, New York University, New York, NY, 10003, USA.
- Department of Psychology, New York University, New York, NY, 10003, USA.
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
21
|
Calderini M, Zhang S, Berberian N, Thivierge JP. Optimal Readout of Correlated Neural Activity in a Decision-Making Circuit. Neural Comput 2018; 30:1573-1611. [PMID: 29652584 DOI: 10.1162/neco_a_01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The neural correlates of decision making have been extensively studied with tasks involving a choice between two alternatives that is guided by visual cues. While a large body of work argues for a role of the lateral intraparietal (LIP) region of cortex in these tasks, this role may be confounded by the interaction between LIP and other regions, including medial temporal (MT) cortex. Here, we describe a simplified linear model of decision making that is adapted to two tasks: a motion discrimination and a categorization task. We show that the distinct contribution of MT and LIP may indeed be confounded in these tasks. In particular, we argue that the motion discrimination task relies on a straightforward visuomotor mapping, which leads to redundant information between MT and LIP. The categorization task requires a more complex mapping between visual information and decision behavior, and therefore does not lead to redundancy between MT and LIP. Going further, the model predicts that noise correlations within LIP should be greater in the categorization compared to the motion discrimination task due to the presence of shared inputs from MT. The impact of these correlations on task performance is examined by analytically deriving error estimates of an optimal linear readout for shared and unique inputs. Taken together, results clarify the contribution of MT and LIP to decision making and help characterize the role of noise correlations in these regions.
Collapse
Affiliation(s)
- Matias Calderini
- Center for Neural Dynamics and School of Psychology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Sophie Zhang
- Center for Neural Dynamics and School of Psychology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Nareg Berberian
- Center for Neural Dynamics and School of Psychology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Jean-Philippe Thivierge
- Center for Neural Dynamics and School of Psychology, University of Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
22
|
Johnson B, Verma R, Sun M, Hanks TD. Characterization of decision commitment rule alterations during an auditory change detection task. J Neurophysiol 2017; 118:2526-2536. [PMID: 28794191 PMCID: PMC5668458 DOI: 10.1152/jn.00071.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 11/22/2022] Open
Abstract
A critical component of decision making is determining when to commit to a choice. This involves stopping rules that specify the requirements for decision commitment. Flexibility of decision stopping rules provides an important means of control over decision-making processes. In many situations, these stopping rules establish a balance between premature decisions and late decisions. In this study we use a novel change detection paradigm to examine how subjects control this balance when invoking different decision stopping rules. The task design allows us to estimate the temporal weighting of sensory information for the decisions, and we find that different stopping rules did not result in systematic differences in that weighting. We also find bidirectional post-error alterations of decision strategy that depend on the type of error and effectively reduce the probability of making consecutive mistakes of the same type. This is a generalization to change detection tasks of the widespread observation of unidirectional post-error slowing in forced-choice tasks. On the basis of these results, we suggest change detection tasks as a promising paradigm to study the neural mechanisms that support flexible control of decision rules.NEW & NOTEWORTHY Flexible decision stopping rules confer control over decision processes. Using an auditory change detection task, we found that alterations of decision stopping rules did not result in systematic changes in the temporal weighting of sensory information. We also found that post-error alterations of decision stopping rules depended on the type of mistake subjects make. These results provide guidance for understanding the neural mechanisms that control decision stopping rules, one of the critical components of decision making and behavioral flexibility.
Collapse
Affiliation(s)
- Bridgette Johnson
- Center for Neuroscience, University of California, Davis, California
- Department of Neurology, University of California, Davis, Sacramento, California; and
| | - Rebeka Verma
- Center for Neuroscience, University of California, Davis, California
- Department of Neurology, University of California, Davis, Sacramento, California; and
- Rutgers New Jersey Medical School, Newark, New Jersey
| | - Manying Sun
- Center for Neuroscience, University of California, Davis, California
- Department of Neurology, University of California, Davis, Sacramento, California; and
| | - Timothy D Hanks
- Center for Neuroscience, University of California, Davis, California;
- Department of Neurology, University of California, Davis, Sacramento, California; and
| |
Collapse
|
23
|
Arandia-Romero I, Nogueira R, Mochol G, Moreno-Bote R. What can neuronal populations tell us about cognition? Curr Opin Neurobiol 2017; 46:48-57. [PMID: 28806694 DOI: 10.1016/j.conb.2017.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/06/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022]
Abstract
Nowadays, it is possible to record the activity of hundreds of cells at the same time in behaving animals. However, these data are often treated and analyzed as if they consisted of many independently recorded neurons. How can neuronal populations be uniquely used to learn about cognition? We describe recent work that shows that populations of simultaneously recorded neurons are fundamental to understand the basis of decision-making, including processes such as ongoing deliberations and decision confidence, which generally fall outside the reach of single-cell analysis. Thus, neuronal population data allow addressing novel questions, but they also come with so far unsolved challenges.
Collapse
Affiliation(s)
- Iñigo Arandia-Romero
- Center for Brain and Cognition & Department of Information and Communications Technologies, University Pompeu Fabra, 08018 Barcelona, Spain
| | - Ramon Nogueira
- Center for Brain and Cognition & Department of Information and Communications Technologies, University Pompeu Fabra, 08018 Barcelona, Spain
| | - Gabriela Mochol
- Center for Brain and Cognition & Department of Information and Communications Technologies, University Pompeu Fabra, 08018 Barcelona, Spain
| | - Rubén Moreno-Bote
- Center for Brain and Cognition & Department of Information and Communications Technologies, University Pompeu Fabra, 08018 Barcelona, Spain; Serra Húnter Fellow Programme, 08018 Barcelona, Spain.
| |
Collapse
|
24
|
A Bayesian Perspective on Accumulation in the Magnitude System. Sci Rep 2017; 7:630. [PMID: 28377631 PMCID: PMC5428809 DOI: 10.1038/s41598-017-00680-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Several theoretical and empirical work posit the existence of a common magnitude system in the brain. Such a proposal implies that manipulating stimuli in one magnitude dimension (e.g. duration in time) should interfere with the subjective estimation of another magnitude dimension (e.g. size in space). Here, we asked whether a generalized Bayesian magnitude estimation system would sample sensory evidence using a common, amodal prior. Two psychophysical experiments separately tested participants on their perception of duration, surface, and numerosity when the non-target magnitude dimensions and the rate of sensory evidence accumulation were manipulated. First, we found that duration estimation was resilient to changes in surface and numerosity, whereas lengthening (shortening) the duration yielded under- (over-) estimations of surface and numerosity. Second, the perception of surface and numerosity were affected by changes in the rate of sensory evidence accumulation, whereas duration was not. Our results suggest that a generalized magnitude system based on Bayesian computations would minimally necessitate multiple priors.
Collapse
|
25
|
Perceptual Decision Making in Rodents, Monkeys, and Humans. Neuron 2017; 93:15-31. [DOI: 10.1016/j.neuron.2016.12.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/23/2022]
|
26
|
Decision Activity in Parietal Cortex – Leader or Follower? Trends Cogn Sci 2016; 20:788-789. [DOI: 10.1016/j.tics.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/04/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
|
27
|
|