1
|
Kronberg G, Ceceli AO, Huang Y, Gaudreault PO, King SG, McClain N, Alia-Klein N, Goldstein RZ. Shared orbitofrontal dynamics to a drug-themed movie track craving and recovery in heroin addiction. Brain 2025; 148:1778-1788. [PMID: 39530592 DOI: 10.1093/brain/awae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/10/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Movies captivate groups of individuals (the audience), especially if they contain themes of common motivational interest to the group. In drug addiction, a key mechanism is maladaptive motivational salience attribution whereby drug cues outcompete other reinforcers within the same environment or context. We predicted that while watching a drug-themed movie, where cues for drugs and other stimuli share a continuous narrative context, functional MRI responses in individuals with heroin use disorder (iHUD) will preferentially synchronize during drug scenes. Thirty inpatient iHUD (24 male) and 25 healthy controls (16 male) watched a drug-themed movie at baseline and at follow-up after 15 weeks. Results revealed such drug-biased synchronization in the orbitofrontal cortex (OFC), ventromedial and ventrolateral prefrontal cortex, and insula. After 15 weeks during ongoing inpatient treatment, there was a significant reduction in this drug-biased shared response in the OFC, which correlated with a concomitant reduction in dynamically-measured craving, suggesting synchronized OFC responses to a drug-themed movie as a neural marker of craving and recovery in iHUD.
Collapse
Affiliation(s)
- Greg Kronberg
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ahmet O Ceceli
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuefeng Huang
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre-Olivier Gaudreault
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah G King
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Natalie McClain
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nelly Alia-Klein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Bein O, Niv Y. Schemas, reinforcement learning and the medial prefrontal cortex. Nat Rev Neurosci 2025; 26:141-157. [PMID: 39775183 DOI: 10.1038/s41583-024-00893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Schemas are rich and complex knowledge structures about the typical unfolding of events in a context; for example, a schema of a dinner at a restaurant. In this Perspective, we suggest that reinforcement learning (RL), a computational theory of learning the structure of the world and relevant goal-oriented behaviour, underlies schema learning. We synthesize literature about schemas and RL to offer that three RL principles might govern the learning of schemas: learning via prediction errors, constructing hierarchical knowledge using hierarchical RL, and dimensionality reduction through learning a simplified and abstract representation of the world. We then suggest that the orbitomedial prefrontal cortex is involved in both schemas and RL due to its involvement in dimensionality reduction and in guiding memory reactivation through interactions with posterior brain regions. Last, we hypothesize that the amount of dimensionality reduction might underlie gradients of involvement along the ventral-dorsal and posterior-anterior axes of the orbitomedial prefrontal cortex. More specific and detailed representations might engage the ventral and posterior parts, whereas abstraction might shift representations towards the dorsal and anterior parts of the medial prefrontal cortex.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Weill Cornell Institute of Geriatric Psychiatry, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Yael Niv
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Psychology Department, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Abdullaeva BS, Abdullaev D, Djuraeva L, Sagdullaeva DK, Kholikov A. Applications of Behavioral Economics and Neuroeconomics in Mental Health. IRANIAN JOURNAL OF PSYCHIATRY 2025; 20:93-101. [PMID: 40093521 PMCID: PMC11904746 DOI: 10.18502/ijps.v20i1.17404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 03/19/2025]
Abstract
Objective: The integration of behavioral economics and neuroeconomics into mental health offers innovative perspectives on understanding and addressing psychological disorders. This overview aims to synthesize current knowledge and explore the implications of these interdisciplinary approaches in the context of mental health. Method : In this narrative review, we summarized the current evidence regarding the applications of behavioral economics and neuroeconomics approaches in the field of mental health. Results: Behavioral economics and neuroeconomics provide valuable insights into the cognitive and emotional processes underlying mental health disorders, such as irrational decision-making, impulsivity, and self-control issues. Concepts such as loss aversion, temporal discounting, and framing effects inform the development of innovative interventions and policy initiatives. Behavioral economic interventions, including nudges, incentives, and commitment devices, show promise in promoting treatment adherence, reducing risky behaviors, and enhancing mental well-being. Neuroeconomics contributes by identifying neural markers predictive of treatment response and relapse risk, paving the way for personalized treatment approaches. Conclusion: The integration of behavioral economics and neuroeconomics into mental health research and practice holds significant potential for improving the understanding of psychological disorders and developing more effective, personalized interventions. Further research is needed to elucidate the mechanisms of action, optimize intervention strategies, and address ethical considerations associated with these approaches in mental health settings.
Collapse
Affiliation(s)
| | - Diyorjon Abdullaev
- Department of Scientific Affairs, Vice-Rector for Scientific Affairs, Urganch State Pedagogical Institute, Urgench, Uzbekistan
| | - Laylo Djuraeva
- Department of Innovation and Sciences, New Uzbekistan University, Tashkent, Uzbekistan
- The State Conservatory of Uzbekistan, Tashkent, Uzbekistan
| | - Dilfuza Karimullaevna Sagdullaeva
- Department of Uzbek Language and Classical Eastern Literature, Faculty of Classical Eastern Philology, International Islamic Academy of Uzbekistan, Tashkent, Uzbekistan
| | - Azam Kholikov
- Department of Mother Language and Teaching Methodology in Primary Education, Tashkent State Pedagogical University, Tashkent, Uzbekistan
| |
Collapse
|
4
|
Mas‐Cuesta L, Baltruschat S, Cándido A, Catena A. Brain signatures of catastrophic events: Emotion, salience, and cognitive control. Psychophysiology 2024; 61:e14674. [PMID: 39169571 PMCID: PMC11579218 DOI: 10.1111/psyp.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/10/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Anticipatory brain activity makes it possible to predict the occurrence of expected situations. However, events such as traffic accidents are statistically unpredictable and can generate catastrophic consequences. This study investigates the brain activity and effective connectivity associated with anticipating and processing such unexpected, unavoidable accidents. We asked 161 participants to ride a motorcycle simulator while recording their electroencephalographic activity. Of these, 90 participants experienced at least one accident while driving. We conducted both within-subjects and between-subjects comparisons. During the pre-accident period, the right inferior parietal lobe (IPL), left anterior cingulate cortex (ACC), and right insula showed higher activity in the accident condition. In the post-accident period, the bilateral orbitofrontal cortex, right IPL, bilateral ACC, and middle and superior frontal gyrus also showed increased activity in the accident condition. We observed greater effective connectivity within the nodes of the limbic network (LN) and between the nodes of the attentional networks in the pre-accident period. In the post-accident period, we also observed greater effective connectivity between networks, from the ventral attention network (VAN) to the somatomotor network and from nodes in the visual network, VAN, and default mode network to nodes in the frontoparietal network, LN, and attentional networks. This suggests that activating salience-related processes and emotional processing allows the anticipation of accidents. Once an accident has occurred, integration and valuation of the new information takes place, and control processes are initiated to adapt behavior to the new demands of the environment.
Collapse
Affiliation(s)
- Laura Mas‐Cuesta
- Mind, Brain and Behavior Research CenterUniversity of Granada, Campus de Cartuja s/nGranadaSpain
| | - Sabina Baltruschat
- Mind, Brain and Behavior Research CenterUniversity of Granada, Campus de Cartuja s/nGranadaSpain
| | - Antonio Cándido
- Mind, Brain and Behavior Research CenterUniversity of Granada, Campus de Cartuja s/nGranadaSpain
| | - Andrés Catena
- School of PsychologyUniversity of Granada, Campus de Cartuja s/nGranadaSpain
| |
Collapse
|
5
|
Shimbo A, Takahashi YK, Langdon AJ, Stalnaker TA, Schoenbaum G. Cracking and Packing Information about the Features of Expected Rewards in the Orbitofrontal Cortex. J Neurosci 2024; 44:e0714242024. [PMID: 39122558 PMCID: PMC11376335 DOI: 10.1523/jneurosci.0714-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The orbitofrontal cortex (OFC) is crucial for tracking various aspects of expected outcomes, thereby helping to guide choices and support learning. Our previous study showed that the effects of reward timing and size on the activity of single units in OFC were dissociable when these attributes were manipulated independently ( Roesch et al., 2006). However, in real-life decision-making scenarios, outcome features often change simultaneously, so here we investigated how OFC neurons in male rats integrate information about the timing and identity (flavor) of reward and respond to changes in these features, according to whether they were changed simultaneously or separately. We found that a substantial number of OFC neurons fired differentially to immediate versus delayed reward and to the different reward flavors. However, contrary to the previous study, selectivity for timing was strongly correlated with selectivity for identity. Taken together with the previous research, these results suggest that when reward features are correlated, OFC tends to "pack" them into unitary constructs, whereas when they are independent, OFC tends to "crack" them into separate constructs. Furthermore, we found that when both reward timing and flavor were changed, reward-responsive OFC neurons showed unique activity patterns preceding and during the omission of an expected reward. Interestingly, this OFC activity is similar and slightly preceded the ventral tegmental area dopamine (VTA DA) activity observed in a previous study ( Takahashi et al., 2023), consistent with the role of OFC in providing predictive information to VTA DA neurons.
Collapse
Affiliation(s)
- Akihiro Shimbo
- National Institute on Drug Abuse Intramural Research Program, Cellular Neurobiology Research Branch, Behavioral Neurophysiology Research Section, Baltimore, Maryland 21224
| | - Yuji K Takahashi
- National Institute on Drug Abuse Intramural Research Program, Cellular Neurobiology Research Branch, Behavioral Neurophysiology Research Section, Baltimore, Maryland 21224
| | - Angela J Langdon
- National Institute on Drug Abuse Intramural Research Program, Cellular Neurobiology Research Branch, Behavioral Neurophysiology Research Section, Baltimore, Maryland 21224
| | - Thomas A Stalnaker
- National Institute on Drug Abuse Intramural Research Program, Cellular Neurobiology Research Branch, Behavioral Neurophysiology Research Section, Baltimore, Maryland 21224
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse Intramural Research Program, Cellular Neurobiology Research Branch, Behavioral Neurophysiology Research Section, Baltimore, Maryland 21224
| |
Collapse
|
6
|
Krikova K, Klein S, Kampa M, Walter B, Stark R, Klucken T. Appetitive conditioning with pornographic stimuli elicits stronger activation in reward regions than monetary and gaming-related stimuli. Hum Brain Mapp 2024; 45:e26711. [PMID: 38798103 PMCID: PMC11128778 DOI: 10.1002/hbm.26711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Appetitive conditioning plays an important role in the development and maintenance of pornography-use and gaming disorders. It is assumed that primary and secondary reinforcers are involved in these processes. Despite the common use of pornography and gaming in the general population appetitive conditioning processes in this context are still not well studied. This study aims to compare appetitive conditioning processes using primary (pornographic) and secondary (monetary and gaming-related) rewards as unconditioned stimuli (UCS) in the general population. Additionally, it investigates the conditioning processes with gaming-related stimuli as this type of UCS was not used in previous studies. Thirty-one subjects participated in a differential conditioning procedure in which four geometric symbols were paired with either pornographic, monetary, or gaming-related rewards or with nothing to become conditioned stimuli (CS + porn, CS + game, CS + money, and CS-) in an functional magnetic resonance imaging study. We observed elevated arousal and valence ratings as well as skin conductance responses for each CS+ condition compared to the CS-. On the neural level, we found activations during the presentation of the CS + porn in the bilateral nucleus accumbens, right medial orbitofrontal cortex, and the right ventral anterior cingulate cortex compared to the CS-, but no significant activations during CS + money and CS + game compared to the CS-. These results indicate that different processes emerge depending on whether primary and secondary rewards are presented separately or together in the same experimental paradigm. Additionally, monetary and gaming-related stimuli seem to have a lower appetitive value than pornographic rewards.
Collapse
Affiliation(s)
- Kseniya Krikova
- Clinical Psychology and PsychotherapyUniversity of SiegenSiegenGermany
- Department of Psychotherapy and Systems NeuroscienceJustus Liebig University GiessenGiessenGermany
- Bender Institute for Neuroimaging (BION)Justus Liebig University GiessenGiessenGermany
| | - Sanja Klein
- Department of Psychotherapy and Systems NeuroscienceJustus Liebig University GiessenGiessenGermany
- Bender Institute for Neuroimaging (BION)Justus Liebig University GiessenGiessenGermany
| | - Miriam Kampa
- Department of Psychotherapy and Systems NeuroscienceJustus Liebig University GiessenGiessenGermany
- Bender Institute for Neuroimaging (BION)Justus Liebig University GiessenGiessenGermany
| | - Bertram Walter
- Department of Psychotherapy and Systems NeuroscienceJustus Liebig University GiessenGiessenGermany
- Bender Institute for Neuroimaging (BION)Justus Liebig University GiessenGiessenGermany
| | - Rudolf Stark
- Department of Psychotherapy and Systems NeuroscienceJustus Liebig University GiessenGiessenGermany
- Bender Institute for Neuroimaging (BION)Justus Liebig University GiessenGiessenGermany
- Center for Mind, Brain and BehaviorUniversities of Marburg and GießenMarburgGermany
| | - Tim Klucken
- Clinical Psychology and PsychotherapyUniversity of SiegenSiegenGermany
| |
Collapse
|
7
|
Kronberg G, Ceceli AO, Huang Y, Gaudreault PO, King SG, McClain N, Alia-Klein N, Goldstein RZ. Naturalistic drug cue reactivity in heroin use disorder: orbitofrontal synchronization as a marker of craving and recovery. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.02.23297937. [PMID: 37961156 PMCID: PMC10635268 DOI: 10.1101/2023.11.02.23297937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Movies captivate groups of individuals (the audience), especially if they contain themes of common motivational interest to the group. In drug addiction, a key mechanism is maladaptive motivational salience attribution whereby drug cues outcompete other reinforcers within the same environment or context. We predicted that while watching a drug-themed movie, where cues for drugs and other stimuli share a continuous narrative context, fMRI responses in individuals with heroin use disorder (iHUD) will preferentially synchronize during drug scenes. Results revealed such drug-biased synchronization in the orbitofrontal cortex (OFC), ventromedial and ventrolateral prefrontal cortex, and insula. After 15 weeks of inpatient treatment, there was a significant reduction in this drug-biased shared response in the OFC, which correlated with a concomitant reduction in dynamically-measured craving, suggesting synchronized OFC responses to a drug-themed movie as a neural marker of craving and recovery in iHUD.
Collapse
Affiliation(s)
- Greg Kronberg
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ahmet O Ceceli
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yuefeng Huang
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Sarah G King
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | | |
Collapse
|
8
|
Chernoff CS, Hynes TJ, Schumacher JD, Ramaiah S, Avramidis DK, Mortazavi L, Floresco SB, Winstanley CA. Noradrenergic regulation of cue-guided decision making and impulsivity is doubly dissociable across frontal brain regions. Psychopharmacology (Berl) 2024; 241:767-783. [PMID: 38001266 DOI: 10.1007/s00213-023-06508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
RATIONALE Win-paired stimuli can promote risk taking in experimental gambling paradigms in both rats and humans. We previously demonstrated that atomoxetine, a noradrenaline reuptake inhibitor, and guanfacine, a selective α2A adrenergic receptor agonist, reduced risk taking on the cued rat gambling task (crGT), a rodent assay of risky choice in which wins are accompanied by salient cues. Both compounds also decreased impulsive premature responding. OBJECTIVE The key neural loci mediating these effects were unknown. The lateral orbitofrontal cortex (lOFC) and the medial prefrontal cortex (mPFC), which are highly implicated in risk assessment, action selection, and impulse control, receive dense noradrenergic innervation. We therefore infused atomoxetine and guanfacine directly into either the lOFC or prelimbic (PrL) mPFC prior to task performance. RESULTS When infused into the lOFC, atomoxetine improved decision making score and adaptive lose-shift behaviour in males, but not in females, without altering motor impulsivity. Conversely, intra-PrL atomoxetine improved impulse control in risk preferring animals of both sexes, but did not alter decision making. Guanfacine administered into the PrL, but not lOFC, also altered motor impulsivity in all subjects, though in the opposite direction to atomoxetine. CONCLUSIONS These data highlight a double dissociation between the behavioural effects of noradrenergic signaling across frontal regions with respect to risky choice and impulsive action. Given that the influence of noradrenergic manipulations on motor impulsivity could depend on baseline risk preference, these data also suggest that the noradrenaline system may function differently in subjects that are susceptible to the risk-promoting lure of win-associated cues.
Collapse
Affiliation(s)
- Chloe S Chernoff
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychology, Downing Site, University of Cambridge, Cambridge, UK.
| | - Tristan J Hynes
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, Downing Site, University of Cambridge, Cambridge, UK
| | - Jackson D Schumacher
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shrishti Ramaiah
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Dimitrios K Avramidis
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of Concordia, Montreal, QC, Canada
| | - Leili Mortazavi
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Stan B Floresco
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Labek K, Sittenberger E, Kienhöfer V, Rabl L, Messina I, Schurz M, Stingl JC, Viviani R. The gradient model of brain organization in decisions involving “empathy for pain”. Cereb Cortex 2022; 33:5839-5850. [PMID: 36537039 DOI: 10.1093/cercor/bhac464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Influential models of cortical organization propose a close relationship between heteromodal association areas and highly connected hubs in the default mode network. The “gradient model” of cortical organization proposes a close relationship between these areas and highly connected hubs in the default mode network, a set of cortical areas deactivated by demanding tasks. Here, we used a decision-making task and representational similarity analysis with classic “empathy for pain” stimuli to probe the relationship between high-level representations of imminent pain in others and these areas. High-level representations were colocalized with task deactivations or the transitions from activations to deactivations. These loci belonged to 2 groups: those that loaded on the high end of the principal cortical gradient and were associated by meta-analytic decoding with the default mode network, and those that appeared to accompany functional repurposing of somatosensory cortex in the presence of visual stimuli. These findings suggest that task deactivations may set out cortical areas that host high-level representations. We anticipate that an increased understanding of the cortical correlates of high-level representations may improve neurobiological models of social interactions and psychopathology.
Collapse
Affiliation(s)
- Karin Labek
- University of Innsbruck Institute of Psychology, , Universitätsstraße 5-7, 6020 Innsbruck , Austria
| | - Elisa Sittenberger
- University of Ulm Psychiatry and Psychotherapy Clinic III, , Leimgrubenweg 12, 89075 Ulm , Germany
| | - Valerie Kienhöfer
- University of Innsbruck Institute of Psychology, , Universitätsstraße 5-7, 6020 Innsbruck , Austria
- University of Ulm Psychiatry and Psychotherapy Clinic III, , Leimgrubenweg 12, 89075 Ulm , Germany
| | - Luna Rabl
- University of Innsbruck Institute of Psychology, , Universitätsstraße 5-7, 6020 Innsbruck , Austria
- University of Ulm Psychiatry and Psychotherapy Clinic III, , Leimgrubenweg 12, 89075 Ulm , Germany
| | - Irene Messina
- University of Ulm Psychiatry and Psychotherapy Clinic III, , Leimgrubenweg 12, 89075 Ulm , Germany
- Scienze e Tecniche Psicologiche,Universitas Mercatorum , Piazza Mattei 10, 00186 Rome , Italy
| | - Matthias Schurz
- University of Innsbruck Institute of Psychology, , Universitätsstraße 5-7, 6020 Innsbruck , Austria
- University of Innsbruck Digital Science Center (DiSC), , Innrain 15, 6020 Innsbruck , Austria
| | - Julia C Stingl
- University Clinic Aachen Clinical Pharmacology, , Wendlingweg 2, 52074 Aachen , Germany
| | - Roberto Viviani
- University of Innsbruck Institute of Psychology, , Universitätsstraße 5-7, 6020 Innsbruck , Austria
- University of Ulm Psychiatry and Psychotherapy Clinic III, , Leimgrubenweg 12, 89075 Ulm , Germany
| |
Collapse
|
10
|
Pai J, Ogasawara T, Bromberg-Martin ES, Ogasawara K, Gereau RW, Monosov IE. Laser stimulation of the skin for quantitative study of decision-making and motivation. CELL REPORTS METHODS 2022; 2:100296. [PMID: 36160041 PMCID: PMC9499993 DOI: 10.1016/j.crmeth.2022.100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/26/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Neuroeconomics studies how decision-making is guided by the value of rewards and punishments. But to date, little is known about how noxious experiences impact decisions. A challenge is the lack of an aversive stimulus that is dynamically adjustable in intensity and location, readily usable over many trials in a single experimental session, and compatible with multiple ways to measure neuronal activity. We show that skin laser stimulation used in human studies of aversion can be used for this purpose in several key animal models. We then use laser stimulation to study how neurons in the orbitofrontal cortex (OFC), an area whose many roles include guiding decisions among different rewards, encode the value of rewards and punishments. We show that some OFC neurons integrated the positive value of rewards with the negative value of aversive laser stimulation, suggesting that the OFC can play a role in more complex choices than previously appreciated.
Collapse
Affiliation(s)
- Julia Pai
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Takaya Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Kei Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert W. Gereau
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University, St. Louis, MO, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Ilya E. Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Neurosurgery, Washington University, St. Louis, MO, USA
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
11
|
Value representations: Fast and slow. Neuron 2022; 110:2046-2048. [DOI: 10.1016/j.neuron.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Johnson EL, Chang WK, Dewar CD, Sorensen D, Lin JJ, Solbakk AK, Endestad T, Larsson PG, Ivanovic J, Meling TR, Scabini D, Knight RT. Orbitofrontal cortex governs working memory for temporal order. Curr Biol 2022; 32:R410-R411. [PMID: 35537388 PMCID: PMC9169582 DOI: 10.1016/j.cub.2022.03.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
How do we think about time? Converging lesion and neuroimaging evidence indicates that orbitofrontal cortex (OFC) supports the encoding and retrieval of temporal context in long-term memory1, which may contribute to confabulation in individuals with OFC damage2. Here, we reveal that OFC damage diminishes working memory for temporal order, that is, the ability to disentangle the relative recency of events as they unfold. OFC lesions reduced working memory for temporal order but not spatial position, and individual deficits were commensurate with lesion size. Comparable effects were absent in patients with lesions restricted to lateral prefrontal cortex (PFC). Based on these findings, we propose that OFC supports understanding of the order of events. Well-documented behavioral changes in individuals with OFC damage2 may relate to impaired temporal-order understanding.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL 60611, USA.
| | - William K Chang
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Callum D Dewar
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Neurosurgery, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | | | - Jack J Lin
- Department of Neurology and Center for Mind and Brain, University of California, Davis, Davis, CA 95616, USA
| | - Anne-Kristin Solbakk
- Department of Neurosurgery, Division of Stereotactic and Functional Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo 0372, Norway; Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo 0373, Norway; RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo 0373, Norway; Department of Neuropsychology, Helgeland Hospital, Mosjøen 8657, Norway
| | - Tor Endestad
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo 0373, Norway; RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo 0373, Norway; Department of Neuropsychology, Helgeland Hospital, Mosjøen 8657, Norway
| | - Pal G Larsson
- Department of Neurosurgery, Division of Stereotactic and Functional Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo 0372, Norway; Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo 0373, Norway
| | - Jugoslav Ivanovic
- Department of Neurosurgery, Division of Stereotactic and Functional Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo 0372, Norway
| | - Torstein R Meling
- Department of Neurosurgery, Division of Stereotactic and Functional Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo 0372, Norway; Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo 0373, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0373, Norway
| | - Donatella Scabini
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Zha R, Li P, Liu Y, Alarefi A, Zhang X, Li J. The orbitofrontal cortex represents advantageous choice in the Iowa gambling task. Hum Brain Mapp 2022; 43:3840-3856. [PMID: 35476367 PMCID: PMC9294296 DOI: 10.1002/hbm.25887] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/19/2022] [Accepted: 03/18/2022] [Indexed: 01/26/2023] Open
Abstract
A good‐based model, the central neurobiological model of economic decision‐making, proposes that the orbitofrontal cortex (OFC) represents binary choice outcome, that is, the chosen good. A good is defined by a group of determinants characterizing the conditions in which the commodity is offered, including commodity type, cost, risk, time delay, and ambiguity. Previous studies have found that the OFC represents the binary choice outcome in decision‐making tasks involving commodity type, cost, risk, and delay. Real‐life decisions are often complex and involve uncertainty, rewards, and penalties; however, whether the OFC represents binary choice outcomes in a complex decision‐making situation, for example, Iowa gambling task (IGT), remains unclear. Here, we propose that the OFC represents binary choice outcome, that is, advantageous choice versus disadvantageous choice, in the IGT. We propose two hypotheses: first, the activity pattern in the human OFC represents an advantageous choice; and second, choice induces an OFC‐related functional network. Using functional magnetic resonance imaging and advanced machine‐learning tools, we found that the OFC represented an advantageous choice in the IGT. The OFC representation of advantageous choice was related to decision‐making performance. Choice modulated the functional connectivity between the OFC and the superior medial gyrus. In conclusion, the OFC represents an advantageous choice during the IGT. In the framework of a good‐based model, the results extend the role of the OFC to complex decision‐making situation when making a binary choice.
Collapse
Affiliation(s)
- Rujing Zha
- Department of Radiology, the First Affiliated Hospital of USTC, Department of Psychology, School of Humanities & Social Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, Anhui, China
| | - Peng Li
- Department of Automation, School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Ying Liu
- Department of Radiology, the First Affiliated Hospital of USTC, Department of Psychology, School of Humanities & Social Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, Anhui, China
| | - Abdulqawi Alarefi
- Department of Radiology, the First Affiliated Hospital of USTC, Department of Psychology, School of Humanities & Social Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, Anhui, China
| | - Xiaochu Zhang
- Department of Radiology, the First Affiliated Hospital of USTC, Department of Psychology, School of Humanities & Social Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, Anhui, China.,Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, Anhui, China.,Hefei Medical Research Center on Alcohol Addiction, Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Anhui Mental Health Center, Hefei, Anhui, China.,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, Anhui, China
| | - Jun Li
- Department of Automation, University of Science and Technology of China, Hefei, China
| |
Collapse
|
14
|
Fine JM, Hayden BY. The whole prefrontal cortex is premotor cortex. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200524. [PMID: 34957853 PMCID: PMC8710885 DOI: 10.1098/rstb.2020.0524] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
We propose that the entirety of the prefrontal cortex (PFC) can be seen as fundamentally premotor in nature. By this, we mean that the PFC consists of an action abstraction hierarchy whose core function is the potentiation and depotentiation of possible action plans at different levels of granularity. We argue that the apex of the hierarchy should revolve around the process of goal-selection, which we posit is inherently a form of optimization over action abstraction. Anatomical and functional evidence supports the idea that this hierarchy originates on the orbital surface of the brain and extends dorsally to motor cortex. Accordingly, our viewpoint positions the orbitofrontal cortex in a key role in the optimization of goal-selection policies, and suggests that its other proposed roles are aspects of this more general function. Our proposed perspective will reframe outstanding questions, open up new areas of inquiry and align theories of prefrontal function with evolutionary principles. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Justin M. Fine
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Y. Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Pizzagalli DA, Roberts AC. Prefrontal cortex and depression. Neuropsychopharmacology 2022; 47:225-246. [PMID: 34341498 PMCID: PMC8617037 DOI: 10.1038/s41386-021-01101-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
The prefrontal cortex (PFC) has emerged as one of the regions most consistently impaired in major depressive disorder (MDD). Although functional and structural PFC abnormalities have been reported in both individuals with current MDD as well as those at increased vulnerability to MDD, this information has not translated into better treatment and prevention strategies. Here, we argue that dissecting depressive phenotypes into biologically more tractable dimensions - negative processing biases, anhedonia, despair-like behavior (learned helplessness) - affords unique opportunities for integrating clinical findings with mechanistic evidence emerging from preclinical models relevant to depression, and thereby promises to improve our understanding of MDD. To this end, we review and integrate clinical and preclinical literature pertinent to these core phenotypes, while emphasizing a systems-level approach, treatment effects, and whether specific PFC abnormalities are causes or consequences of MDD. In addition, we discuss several key issues linked to cross-species translation, including functional brain homology across species, the importance of dissecting neural pathways underlying specific functional domains that can be fruitfully probed across species, and the experimental approaches that best ensure translatability. Future directions and clinical implications of this burgeoning literature are discussed.
Collapse
Affiliation(s)
- Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School & McLean Hospital, Belmont, MA, USA.
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Mızrak E, Bouffard NR, Libby LA, Boorman ED, Ranganath C. The hippocampus and orbitofrontal cortex jointly represent task structure during memory-guided decision making. Cell Rep 2021; 37:110065. [PMID: 34852232 PMCID: PMC8686644 DOI: 10.1016/j.celrep.2021.110065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 07/23/2021] [Accepted: 11/05/2021] [Indexed: 11/28/2022] Open
Abstract
The hippocampus, well known for its role in episodic memory, might also be an important brain region for extracting structure from our experiences in order to guide future decisions. Recent evidence in rodents suggests that the hippocampus supports decision making by representing task structure in cooperation with the orbitofrontal cortex (OFC). Here, we examine how the human hippocampus and OFC represent task structure during an associative learning task that required learning of both context-determined and context-invariant probabilistic associations. We find that after learning, hippocampal and lateral OFC representations differentiated between context-determined and context-invariant task structures. The degree of this differentiation within the hippocampus and lateral OFC is highly correlated. These results advance our understanding of the hippocampus and suggest that the hippocampus and OFC support goal-directed behavior by representing information that guides the selection of appropriate decision strategies. Mizrak et al. use fMRI to demonstrate that hippocampus and orbitofrontal cortex generalize across decisions that share the same task sub-structure compared with different task sub-structures. Results show that the hippocampus, in coordination with OFC, supports decision making by extracting structure from past experiences.
Collapse
Affiliation(s)
- Eda Mızrak
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA; Department of Psychology, University of Zürich, Zürich 8006, Switzerland.
| | - Nichole R Bouffard
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Laura A Libby
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Erie D Boorman
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, Davis, CA 95618, USA; Center for Mind and Brain, University of California, Davis, Davis, CA 95618, USA
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, Davis, CA 95618, USA.
| |
Collapse
|
17
|
Bradfield L, Balleine B. Editorial overview: Value-based decision making: control, value, and context in action. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Putnam PT, Chang SWC. Toward a holistic view of value and social processing in the amygdala: Insights from primate behavioral neurophysiology. Behav Brain Res 2021; 411:113356. [PMID: 33989727 PMCID: PMC8238892 DOI: 10.1016/j.bbr.2021.113356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
Located medially within the temporal lobes, the amygdala is a formation of heterogenous nuclei that has emerged as a target for investigations into the neural bases of both primitive and complex behaviors. Although modern neuroscience has eschewed the practice of assigning broad functions to distinct brain regions, the amygdala has classically been associated with regulating negative emotional processes (such as fear or aggression), primarily through research performed in rodent models. Contemporary studies, particularly those in non-human primate models, have provided evidence for a role of the amygdala in other aspects of cognition such as valuation of stimuli or shaping social behaviors. Consequently, many modern perspectives now also emphasize the amygdala's role in processing positive affect and social behaviors. Importantly, several recent experiments have examined the intersection of two seemingly autonomous domains; how both valence/value and social stimuli are simultaneously represented in the amygdala. Results from these studies suggest that there is an overlap between valence/value processing and the processing of social behaviors at the level of single neurons. These findings have prompted researchers investigating the neurophysiological mechanisms underlying social interactions to question what contributions reward-related processes in the amygdala make in shaping social behaviors. In this review, we will examine evidence, primarily from primate neurophysiology, suggesting that value-related processes in the amygdala interact with the processing of social stimuli, and explore holistic hypotheses about how these amygdalar interactions might be instantiated.
Collapse
Affiliation(s)
- Philip T Putnam
- Department of Psychology, Yale University, New Haven, CT, 06520, United States.
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT, 06520, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, United States; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, 06511, United States
| |
Collapse
|