1
|
Fortier E, Bellec P, Boyle JA, Fuente A. MRI noise and auditory health: Can one hundred scans be linked to hearing loss? The case of the Courtois NeuroMod project. PLoS One 2025; 20:e0309513. [PMID: 39823462 PMCID: PMC11741633 DOI: 10.1371/journal.pone.0309513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/13/2024] [Indexed: 01/19/2025] Open
Abstract
Magnetic resonance imaging (MRI) is one of the most commonly used tools in neuroscience. However, it implies exposure to high noise levels. Exposure to noise can lead to temporary or permanent hearing loss, especially when the exposure is long and/or repeated. Little is known about the hearing risks for people undergoing several MRI examinations, especially in the context of longitudinal studies. The goal of this study was to assess the potential impact of repeated exposure to MRI noise on hearing in research participants undergoing dozens of MRI scans. This investigation was made possible thanks to an unprecedented intensive MRI research data collection effort (the Courtois NeuroMod project) where participants have been scanned weekly (up to twice a week), with the use of hearing protection, since 2018. Their hearing was tested periodically, over a period of 1.5 years. First, baseline pure-tone thresholds and distortion product otoacoustic emission (DPOAE) amplitudes were acquired before the beginning of this study. Hearing tests were then scheduled immediately before/immediately after a scan and with a delay of two to seven days after a scan. Pure-tone thresholds and DPOAE amplitudes showed no scanner noise impact right after the scan session when compared to the values acquired right before the scan session. Pure-tone thresholds and DPOAE amplitudes acquired in the delayed condition and compared to the baseline showed similar results. These results suggest an absence of impact from MRI noise exposure. Overall, our results show that an intensive longitudinal MRI study like the Courtois NeuroMod project likely does not cause hearing damage to participants when they properly utilize adequate hearing protection.
Collapse
Affiliation(s)
- Eddy Fortier
- Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Pierre Bellec
- Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Julie A. Boyle
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Adrian Fuente
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- École d’orthophonie et d’audiologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Pinho AL, Richard H, Ponce AF, Eickenberg M, Amadon A, Dohmatob E, Denghien I, Torre JJ, Shankar S, Aggarwal H, Thual A, Chapalain T, Ginisty C, Becuwe-Desmidt S, Roger S, Lecomte Y, Berland V, Laurier L, Joly-Testault V, Médiouni-Cloarec G, Doublé C, Martins B, Varoquaux G, Dehaene S, Hertz-Pannier L, Thirion B. Individual Brain Charting dataset extension, third release for movie watching and retinotopy data. Sci Data 2024; 11:590. [PMID: 38839770 PMCID: PMC11153490 DOI: 10.1038/s41597-024-03390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
The Individual Brain Charting (IBC) is a multi-task functional Magnetic Resonance Imaging dataset acquired at high spatial-resolution and dedicated to the cognitive mapping of the human brain. It consists in the deep phenotyping of twelve individuals, covering a broad range of psychological domains suitable for functional-atlasing applications. Here, we present the inclusion of task data from both naturalistic stimuli and trial-based designs, to uncover structures of brain activation. We rely on the Fast Shared Response Model (FastSRM) to provide a data-driven solution for modelling naturalistic stimuli, typically containing many features. We show that data from left-out runs can be reconstructed using FastSRM, enabling the extraction of networks from the visual, auditory and language systems. We also present the topographic organization of the visual system through retinotopy. In total, six new tasks were added to IBC, wherein four trial-based retinotopic tasks contributed with a mapping of the visual field to the cortex. IBC is open access: source plus derivatives imaging data and meta-data are available in public repositories.
Collapse
Affiliation(s)
- Ana Luísa Pinho
- Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France.
- Department of Computer Science, Western University, London, Ontario, Canada.
- Western Centre for Brain and Mind, Western University, London, Ontario, Canada.
| | - Hugo Richard
- Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
- Criteo AI Labs, Paris, France
- FAIRPLAY - IA coopérative: équité, vie privée, incitations, Paris, France
| | | | - Michael Eickenberg
- Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
- Flatiron Institute, New York, USA
| | - Alexis Amadon
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
| | - Elvis Dohmatob
- Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
- Meta FAIR, Paris, France
| | - Isabelle Denghien
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin center, 91191, Gif-sur-Yvette, France
| | | | - Swetha Shankar
- Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
| | | | - Alexis Thual
- Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin center, 91191, Gif-sur-Yvette, France
- Collège de France, Paris, France
| | | | | | | | | | - Yann Lecomte
- CEA Saclay/DRF/IFJ/NeuroSpin/UNIACT, Paris, France
| | | | | | | | | | | | | | - Gaël Varoquaux
- Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin center, 91191, Gif-sur-Yvette, France
- Collège de France, Paris, France
| | - Lucie Hertz-Pannier
- CEA Saclay/DRF/IFJ/NeuroSpin/UNIACT, Paris, France
- UMR 1141, NeuroDiderot, Université de Paris, Paris, France
| | | |
Collapse
|
3
|
Thirion B, Aggarwal H, Ponce AF, Pinho AL, Thual A. Should one go for individual- or group-level brain parcellations? A deep-phenotyping benchmark. Brain Struct Funct 2024; 229:161-181. [PMID: 38012283 DOI: 10.1007/s00429-023-02723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/11/2023] [Indexed: 11/29/2023]
Abstract
The analysis and understanding of brain characteristics often require considering region-level information rather than voxel-sampled data. Subject-specific parcellations have been put forward in recent years, as they can adapt to individual brain organization and thus offer more accurate individual summaries than standard atlases. However, the price to pay for adaptability is the lack of group-level consistency of the data representation. Here, we investigate whether the good representations brought by individualized models are merely an effect of circular analysis, in which individual brain features are better represented by subject-specific summaries, or whether this carries over to new individuals, i.e., whether one can actually adapt an existing parcellation to new individuals and still obtain good summaries in these individuals. For this, we adapt a dictionary-learning method to produce brain parcellations. We use it on a deep-phenotyping dataset to assess quantitatively the patterns of activity obtained under naturalistic and controlled-task-based settings. We show that the benefits of individual parcellations are substantial, but that they vary a lot across brain systems.
Collapse
Affiliation(s)
| | | | | | - Ana Luísa Pinho
- Department of Computer Science, Western University, London, ON, Canada
- Western Institute for Neuroscience, Western University, London, ON, Canada
| | - Alexis Thual
- Inria, CEA, Université Paris-Saclay, 91120, Palaiseau, France
- Inserm, Collège de France, Paris, France
| |
Collapse
|
4
|
Hauptman M, Blank I, Fedorenko E. Non-literal language processing is jointly supported by the language and theory of mind networks: Evidence from a novel meta-analytic fMRI approach. Cortex 2023; 162:96-114. [PMID: 37023480 PMCID: PMC10210011 DOI: 10.1016/j.cortex.2023.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2022] [Accepted: 01/11/2023] [Indexed: 03/12/2023]
Abstract
Going beyond the literal meaning of language is key to communicative success. However, the mechanisms that support non-literal inferences remain debated. Using a novel meta-analytic approach, we evaluate the contribution of linguistic, social-cognitive, and executive mechanisms to non-literal interpretation. We identified 74 fMRI experiments (n = 1,430 participants) from 2001 to 2021 that contrasted non-literal language comprehension with a literal control condition, spanning ten phenomena (e.g., metaphor, irony, indirect speech). Applying the activation likelihood estimation approach to the 825 activation peaks yielded six left-lateralized clusters. We then evaluated the locations of both the individual-study peaks and the clusters against probabilistic functional atlases (cf. anatomical locations, as is typically done) for three candidate brain networks-the language-selective network (Fedorenko, Behr, & Kanwisher, 2011), which supports language processing, the Theory of Mind (ToM) network (Saxe & Kanwisher, 2003), which supports social inferences, and the domain-general Multiple-Demand (MD) network (Duncan, 2010), which supports executive control. These atlases were created by overlaying individual activation maps of participants who performed robust and extensively validated 'localizer' tasks that selectively target each network in question (n = 806 for language; n = 198 for ToM; n = 691 for MD). We found that both the individual-study peaks and the ALE clusters fell primarily within the language network and the ToM network. These results suggest that non-literal processing is supported by both i) mechanisms that process literal linguistic meaning, and ii) mechanisms that support general social inference. They thus undermine a strong divide between literal and non-literal aspects of language and challenge the claim that non-literal processing requires additional executive resources.
Collapse
Affiliation(s)
- Miriam Hauptman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Idan Blank
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Department of Psychology, UCLA, Los Angeles, CA 90095, USA; Department of Linguistics, UCLA, Los Angeles, CA 90095, USA
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Program in Speech and Hearing in Bioscience and Technology, Harvard University, Boston, MA 02114, USA.
| |
Collapse
|
5
|
Michon KJ, Khammash D, Simmonite M, Hamlin AM, Polk TA. Person-specific and precision neuroimaging: Current methods and future directions. Neuroimage 2022; 263:119589. [PMID: 36030062 DOI: 10.1016/j.neuroimage.2022.119589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022] Open
Abstract
Most neuroimaging studies of brain function analyze data in normalized space to identify regions of common activation across participants. These studies treat interindividual differences in brain organization as noise, but this approach can obscure important information about the brain's functional architecture. Recently, a number of studies have adopted a person-specific approach that aims to characterize these individual differences and explore their reliability and implications for behavior. A subset of these studies has taken a precision imaging approach that collects multiple hours of data from each participant to map brain function on a finer scale. In this review, we provide a broad overview of how person-specific and precision imaging techniques have used resting-state measures to examine individual differences in the brain's organization and their impact on behavior, followed by how task-based activity continues to add detail to these discoveries. We argue that person-specific and precision approaches demonstrate substantial promise in uncovering new details of the brain's functional organization and its relationship to behavior in many areas of cognitive neuroscience. We also discuss some current limitations in this new field and some new directions it may take.
Collapse
Affiliation(s)
| | - Dalia Khammash
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Molly Simmonite
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Abbey M Hamlin
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|