1
|
Sanghan T, Hohsoh N, Stojanović G, Begg R, Chatpun S. Inter-lower limb and intra-lower limb muscle activity correlations during walking: A comparative study of stroke patients and healthy individuals. PLoS One 2025; 20:e0319955. [PMID: 40354342 PMCID: PMC12068577 DOI: 10.1371/journal.pone.0319955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/10/2025] [Indexed: 05/14/2025] Open
Abstract
Gait analysis is a crucial tool for understanding human locomotion, particularly in clinical settings where it aids in diagnosing and managing conditions that affect movement. This study investigated muscle activity, intra-, and inter-muscular correlations during gait phases, including first double support (DS1), single support (SS), second double support (DS2), and swing (SW) in both healthy individuals and stroke patients. By examining the root mean square (RMS) values and the area under the curve of RMS envelope of EMG for the gluteus medius (GM), rectus femoris (RF), biceps femoris (BF), medial gastrocnemius (MG), tibialis anterior (TA) and peroneus longus (PL) muscles, this research was designed to enhance our understanding of muscle coordination and its complications in stroke gait rehabilitation. The findings indicated significant differences in muscular activity and inter-limb correlations between limbs within both groups. Stroke patients exhibited knee hyperextension during stance phase, primarily due to muscle weakness and compensatory mechanisms, which may coexist with stiff knee gait during swing phase. Healthy participants showed proximal muscle weakness, likely age-related. Asymmetries in muscle activation between limbs were also observed in both groups, contributing to gait instability and an increased risk of falls. This study provides insights into the differences in muscle coordination between healthy individuals and stroke patients during various phases of walking. The findings emphasize the importance of training distal muscles, including the MG, TA, and PL muscles, in stroke patients, particularly in elderly, while also focusing on core/proximal muscles like the GM, RF, and BF muscles to improve weight-bearing support and gait stability, especially in cases of limited ankle movement. For age-induced muscle weakness, the emphasis should be on distal muscles. These findings have the potential to improve clinical practices by offering better-tailored interventions to enhance mobility and quality of life in stroke survivors.
Collapse
Affiliation(s)
- Thanita Sanghan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Nusreena Hohsoh
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Goran Stojanović
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Rezaul Begg
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Surapong Chatpun
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
2
|
Lee H, Park JH, Shin JH, Roh J, Park HS. Muscle-to-action mapping for intuitive training of muscle synergies in post-stroke upper-limb rehabilitation. J Neuroeng Rehabil 2025; 22:99. [PMID: 40296104 PMCID: PMC12039200 DOI: 10.1186/s12984-025-01630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Effective motor task execution relies on precise muscle coordination, which is often disrupted after a stroke, leading to impaired motor functions. Post-stroke, alterations in intermuscular coordination, including abnormal coupling of shoulder abductor muscles, are commonly observed and contribute to these impairments. Traditional rehabilitation often overlooks this complex intermuscular coordination, and there is a need for intuitive strategies to modify abnormal muscle synergies. OBJECTIVE This study introduced a novel "muscle-to-action mapping" approach to alter activation profiles of stroke affected muscle synergies. Muscle-to-action mapping trains complex muscle synergies by mapping them to intuitive motions or force directions. By mimicking target actions, patients can achieve desired muscle activation patterns. The feasibility of this approach for correcting abnormal intermuscular coordination and improving force control during reaching was tested in stroke survivors. METHODS A force tracking training system using muscle-to-action mapping was developed to modify abnormal synergy activation profiles during isokinetic reaching tasks. The system guided muscle activation by predicting the direction of endpoint force needed to activate specific muscle synergies, deviating from habitual patterns. The system's effectiveness was evaluated in eleven chronic stroke survivors, measuring changes in muscle synergies, endpoint force control, and clinical assessment scores. RESULTS The intervention significantly enhanced targeted muscle synergy activations and endpoint force control, demonstrating the training's ability to induce desired muscle synergy activation profiles through muscle-to-action mapping. The overall structure of muscle synergies remained mostly unchanged post-training, highlighting the potential to modify activation profiles without altering synergy vectors. Functional improvements were reflected in the Fugl-Meyer Assessment for the Upper Extremity and Wolf Motor Function Test scores, which increased by 3.36 and 6.45 points, respectively. CONCLUSION This study validates muscle-to-action mapping for training muscle synergy activation profiles in stroke survivors. Using a biomechanical model to generate endpoint forces, this method effectively altered synergy activation profiles and improved force control during reaching tasks, leading to clinical improvements. These findings indicate that muscle-to-action mapping could be a valuable addition to stroke rehabilitation, offering an intuitive method for enhancing intermuscular coordination and motor recovery. TRIAL REGISTRATION Registered in Clinical Research Information System of Korea National Institute of Health (KCT0005803).
Collapse
Affiliation(s)
- Hangil Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jeong-Ho Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Joon-Ho Shin
- Department of Neurorehabilitation, National Rehabilitation Center, Seoul, 01022, South Korea
| | - Jinsook Roh
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77004, USA
| | - Hyung-Soon Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
3
|
Belghith K, Zidi M, Vincent L, Fedele JM, Bou-Serhal R, Maktouf W. Eccentric strengthening vs. conventional therapy in sub-acute stroke survivors: a randomized controlled trial. Front Neurol 2025; 15:1398860. [PMID: 39917437 PMCID: PMC11798797 DOI: 10.3389/fneur.2024.1398860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/09/2024] [Indexed: 02/09/2025] Open
Abstract
Spastic paresis, a frequent consequence of stroke, is characterized by both neurological and muscular alterations, leading to decreased muscle strength, increased passive muscle stiffness, and subsequently, diminished functional capacity. Although conventional rehabilitation programs are effective in enhancing muscle strength, they often fail to yield clinically significant improvements in functional capacities. Eccentric Training (ET) has shown promise in addressing the shortened muscle fascicle lengths and joint contractures commonly observed in stroke survivors. Despite the prevalence of contractures and rigidity in this population, the effects of ET on the structural and mechanical properties of muscles remain underexplored. This study aims to investigate the impact of ET on gait speed in sub-acute stroke patients compared to conventional therapy. Additionally, we aim to explore the effects of ET on the mechanical properties, structural characteristics, and neuromuscular parameters of the plantar flexors. A randomized controlled trial will be conducted, adhering to CONSORT guidelines, with participants assigned to either a Conventional Therapy Group or an Eccentric Training Group. Assessments will be conducted at baseline, and after ET intervention, encompassing clinical, biomechanical, and functional evaluations. This study seeks to provide empirical evidence on the efficacy of ET in improving motor outcomes in sub-acute stroke patients, thereby informing more effective rehabilitation strategies.
Collapse
Affiliation(s)
- Kalthoum Belghith
- Bioengineering, Tissues and Neuroplasticity, UR 7377, Faculty of Health/EPISEN, University of Paris-Est Créteil, Créteil, France
- EMEIS Group, Clinique du Parc de Belleville, Paris, France
| | - Mustapha Zidi
- Bioengineering, Tissues and Neuroplasticity, UR 7377, Faculty of Health/EPISEN, University of Paris-Est Créteil, Créteil, France
| | - Lhéo Vincent
- Bioengineering, Tissues and Neuroplasticity, UR 7377, Faculty of Health/EPISEN, University of Paris-Est Créteil, Créteil, France
- EMEIS Group, Clinique du Parc de Belleville, Paris, France
| | | | | | - Wael Maktouf
- Bioengineering, Tissues and Neuroplasticity, UR 7377, Faculty of Health/EPISEN, University of Paris-Est Créteil, Créteil, France
| |
Collapse
|
4
|
Doan H, Tavasoli S, Seo G, Park HS, Park H, Roh J. Electro-tactile modulation of muscle activation and intermuscular coordination in the human upper extremity. Sci Rep 2025; 15:2559. [PMID: 39833302 PMCID: PMC11756415 DOI: 10.1038/s41598-025-86342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Electro-tactile stimulation (ETS) can be a promising aid in augmenting sensation for those with sensory deficits. Although applications of ETS have been explored, the impact of ETS on the underlying strategies of neuromuscular coordination remains largely unexplored. We investigated how ETS, alone or in the presence of mechano-tactile environment change, modulated the electromyogram (EMG) of individual muscles during force control and how the stimulation modulated the attributes of intermuscular coordination, assessed by muscle synergy analysis, in human upper extremities. ETS was applied to either the thumb or middle fingertip which had greater contact with the handle, grasped by the participant, and supported a target force match. EMGs were recorded from 11 arm muscles of 15 healthy participants during three-dimensional exploratory force control. EMGs were modeled as the linear combination of muscle co-activation patterns (the composition of muscle synergies) and their activation profiles. Individual arm muscle activation changed depending on the ETS location on the finger. The composition of muscle synergies was conserved, but synergy activation coefficients altered reflecting the effects of electro-tactile modulation. The mechano-tactile modulation tended to decrease the effects of ETS on the individual muscle activation and synergy activation magnitude. This study provides insights into sensory augmentation and its impact on intermuscular coordination in the human upper extremity.
Collapse
Affiliation(s)
- Hy Doan
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA
| | - Shahabedin Tavasoli
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA
| | - Gang Seo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Hyung-Soon Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hangue Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Electrical and Computer Engineering, Texas A&M University,, TX, 77843, College Station, USA
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Department of MetaBioHealth, Sungkyunkwan University, Suwon, South Korea
| | - Jinsook Roh
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA.
| |
Collapse
|
5
|
Ortega-Auriol P, Byblow WD, Ren AX, Besier T, McMorland AJC. The role of muscle synergies and task constraints on upper limb motor impairment after stroke. Exp Brain Res 2025; 243:40. [PMID: 39775868 PMCID: PMC11706858 DOI: 10.1007/s00221-024-06953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/02/2024] [Indexed: 01/11/2025]
Abstract
This study explores the role of task constraints over muscle synergies expression in the context of upper limb motor impairment after stroke. We recruited nine chronic stroke survivors with upper limb impairments and fifteen healthy controls, who performed a series of tasks designed to evoke muscle synergies through various spatial explorations. These tasks included an isometric force task, a dynamic reaching task, the clinical Fugl-Meyer (FM) assessment, and a pinch task. Electromyographic data from 16 upper limb muscles were collected during each task, alongside intermuscular coherence (IMC) measurements during the pinch task to assess neuromuscular connectivity. The findings confirm that motor impairment is inversely related to the diversity of muscle synergies, with fewer synergies and more stereotypical synergy structures observed post-stroke. The study further reveals that the nature of motor tasks significantly affects the number of identifiable muscle synergies, with less constrained tasks revealing a broader array of synergies. These findings highlight the importance of carefully selecting motor tasks in the context of clinical research and assessments to understand a patient's motor impairment, thus aiding in developing tailored rehabilitation strategies.
Collapse
Affiliation(s)
- Pablo Ortega-Auriol
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - April Xiaoge Ren
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Angus J C McMorland
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
O'Reilly D, Delis I. Alterations of upper-extremity functional muscle networks in chronic stroke survivors. Exp Brain Res 2024; 243:31. [PMID: 39710730 PMCID: PMC11663821 DOI: 10.1007/s00221-024-06973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Current clinical assessment tools don't fully capture the genuine neural deficits experienced by chronic stroke survivors and, consequently, they don't fully explain motor function throughout everyday life. Towards addressing this problem, here we aimed to characterise post-stroke alterations in upper-limb control from a novel perspective to the muscle synergy by applying, for the first time, a computational approach that quantifies diverse types of functional muscle interactions (i.e. functionally-similar (redundant), -complementary (synergistic) and -independent (unique)). From single-trials of a simple forward pointing movement, we extracted networks of functionally diverse muscle interactions from chronic stroke survivors and unimpaired controls, identifying shared and group-specific modules across each interaction type (i.e. redundant, synergistic and unique). Reconciling previous studies, we found evidence for both the concurrent preservation of healthy functional modules post-stroke and muscle network structure alterations underpinned by systemic muscle interaction re-weighting and functional reorganisation across all interaction types. Cluster analysis of stroke survivors revealed two distinct patient subgroups from each interaction type that all distinguished less impaired individuals who were able to adopt novel motor patterns different to unimpaired controls from more severely impaired individuals who did not. Our work here provides a nuanced account of post-stroke functional impairment and, in doing so, paves new avenues towards progressing the clinical use case of muscle synergy analysis.
Collapse
Affiliation(s)
- David O'Reilly
- School of Biomedical sciences, University of Leeds, Leeds, UK.
| | - Ioannis Delis
- School of Biomedical sciences, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Facciorusso S, Guanziroli E, Brambilla C, Spina S, Giraud M, Molinari Tosatti L, Santamato A, Molteni F, Scano A. Muscle synergies in upper limb stroke rehabilitation: a scoping review. Eur J Phys Rehabil Med 2024; 60:767-792. [PMID: 39248705 PMCID: PMC11558461 DOI: 10.23736/s1973-9087.24.08438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/04/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Upper limb impairment is a common consequence of stroke, significantly affecting the quality of life and independence of survivors. This scoping review assesses the emerging field of muscle synergy analysis in enhancing upper limb rehabilitation, focusing on the comparison of various methodologies and their outcomes. It aims to standardize these approaches to improve the effectiveness of rehabilitation interventions and drive future research in the domain. EVIDENCE ACQUISITION Studies included in this scoping review focused on the analysis of muscle synergies during longitudinal rehabilitation of stroke survivors' upper limbs. A systematic literature search was conducted using PubMed, Scopus, and Web of Science databases, until September 2023, and was guided by the PRISMA for scoping review framework. EVIDENCE SYNTHESIS Fourteen studies involving a total of 247 stroke patients were reviewed, featuring varied patient populations and rehabilitative interventions. Protocols differed among studies, with some utilizing robotic assistance and others relying on traditional therapy methods. Muscle synergy extraction was predominantly conducted using Non-Negative Matrix Factorization from electromyography data, focusing on key upper limb muscles essential for shoulder, elbow, and wrist rehabilitation. A notable observation across the studies was the heterogeneity in findings, particularly in the changes observed in the number, weightings, and temporal coefficients of muscle synergies. The studies indicated varied and complex relationships between muscle synergy variations and clinical outcomes. This diversity underscored the complexity involved in interpreting muscle coordination in the stroke population. The variability in results was also influenced by differing methodologies in muscle synergy analysis, highlighting a need for more standardized approaches to improve future research comparability and consistency. CONCLUSIONS The synthesis of evidence presented in this scoping review highlights the promising role of muscle synergy analysis as an indicator of motor control recovery in stroke rehabilitation. By offering a comprehensive overview of the current state of research and advocating for harmonized methodological practices in future longitudinal studies, this scoping review aspires to advance the field of upper limb rehabilitation, ensuring that post-stroke interventions are both scientifically grounded and optimally beneficial for patients.
Collapse
Affiliation(s)
- Salvatore Facciorusso
- Department of Medical and Surgical Specialties and Dentistry, Luigi Vanvitelli University of Campania, Naples, Italy -
- Spasticity and Movement Disorders "ReSTaRt", Section of Physical Medicine and Rehabilitation, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy -
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital Como, Costa Masnaga, Lecco, Italy
| | - Cristina Brambilla
- Institute of Systems and Technologies for Industrial Intelligent Technologies and Advanced Manufacturing, Italian Council of National Research, Milan, Italy
| | - Stefania Spina
- Spasticity and Movement Disorders "ReSTaRt", Section of Physical Medicine and Rehabilitation, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Manuela Giraud
- Villa Beretta Rehabilitation Center, Valduce Hospital Como, Costa Masnaga, Lecco, Italy
| | - Lorenzo Molinari Tosatti
- Institute of Systems and Technologies for Industrial Intelligent Technologies and Advanced Manufacturing, Italian Council of National Research, Milan, Italy
| | - Andrea Santamato
- Spasticity and Movement Disorders "ReSTaRt", Section of Physical Medicine and Rehabilitation, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital Como, Costa Masnaga, Lecco, Italy
| | - Alessandro Scano
- Institute of Systems and Technologies for Industrial Intelligent Technologies and Advanced Manufacturing, Italian Council of National Research, Milan, Italy
| |
Collapse
|
8
|
Borzelli D, De Marchis C, Quercia A, De Pasquale P, Casile A, Quartarone A, Calabrò RS, d’Avella A. Muscle Synergy Analysis as a Tool for Assessing the Effectiveness of Gait Rehabilitation Therapies: A Methodological Review and Perspective. Bioengineering (Basel) 2024; 11:793. [PMID: 39199751 PMCID: PMC11351442 DOI: 10.3390/bioengineering11080793] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
According to the modular hypothesis for the control of movement, muscles are recruited in synergies, which capture muscle coordination in space, time, or both. In the last two decades, muscle synergy analysis has become a well-established framework in the motor control field and for the characterization of motor impairments in neurological patients. Altered modular control during a locomotion task has been often proposed as a potential quantitative metric for characterizing pathological conditions. Therefore, the purpose of this systematic review is to analyze the recent literature that used a muscle synergy analysis of neurological patients' locomotion as an indicator of motor rehabilitation therapy effectiveness, encompassing the key methodological elements to date. Searches for the relevant literature were made in Web of Science, PubMed, and Scopus. Most of the 15 full-text articles which were retrieved and included in this review identified an effect of the rehabilitation intervention on muscle synergies. However, the used experimental and methodological approaches varied across studies. Despite the scarcity of studies that investigated the effect of rehabilitation on muscle synergies, this review supports the utility of muscle synergies as a marker of the effectiveness of rehabilitative therapy and highlights the challenges and open issues that future works need to address to introduce the muscle synergies in the clinical practice and decisional process.
Collapse
Affiliation(s)
- Daniele Borzelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.Q.); (A.C.)
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | | | - Angelica Quercia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.Q.); (A.C.)
| | - Paolo De Pasquale
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (P.D.P.); (A.Q.); (R.S.C.)
| | - Antonino Casile
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (A.Q.); (A.C.)
| | - Angelo Quartarone
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (P.D.P.); (A.Q.); (R.S.C.)
| | | | - Andrea d’Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
9
|
Scano A, Lanzani V, Brambilla C, d’Avella A. Transferring Sensor-Based Assessments to Clinical Practice: The Case of Muscle Synergies. SENSORS (BASEL, SWITZERLAND) 2024; 24:3934. [PMID: 38931719 PMCID: PMC11207859 DOI: 10.3390/s24123934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Sensor-based assessments in medical practice and rehabilitation include the measurement of physiological signals such as EEG, EMG, ECG, heart rate, and NIRS, and the recording of movement kinematics and interaction forces. Such measurements are commonly employed in clinics with the aim of assessing patients' pathologies, but so far some of them have found full exploitation mainly for research purposes. In fact, even though the data they allow to gather may shed light on physiopathology and mechanisms underlying motor recovery in rehabilitation, their practical use in the clinical environment is mainly devoted to research studies, with a very reduced impact on clinical practice. This is especially the case for muscle synergies, a well-known method for the evaluation of motor control in neuroscience based on multichannel EMG recordings. In this paper, considering neuromotor rehabilitation as one of the most important scenarios for exploiting novel methods to assess motor control, the main challenges and future perspectives for the standard clinical adoption of muscle synergy analysis are reported and critically discussed.
Collapse
Affiliation(s)
- Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (V.L.); (C.B.)
| | - Valentina Lanzani
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (V.L.); (C.B.)
| | - Cristina Brambilla
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (V.L.); (C.B.)
| | - Andrea d’Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy;
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
10
|
Ye C, Saboksayr SS, Shaw W, Coats RO, Astill SL, Mateos G, Delis I. A tensor decomposition reveals ageing-induced differences in muscle and grip-load force couplings during object lifting. Sci Rep 2024; 14:13937. [PMID: 38886363 PMCID: PMC11183154 DOI: 10.1038/s41598-024-62768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Do motor patterns of object lifting movements change as a result of ageing? Here we propose a methodology for the characterization of these motor patterns across individuals of different age groups. Specifically, we employ a bimanual grasp-lift-replace protocol with younger and older adults and combine measurements of muscle activity with grip and load forces to provide a window into the motor strategies supporting effective object lifts. We introduce a tensor decomposition to identify patterns of muscle activity and grip-load force ratios while also characterizing their temporal profiles and relative activation across object weights and participants of different age groups. We then probe age-induced changes in these components. A classification analysis reveals three motor components that are differentially recruited between the two age groups. Linear regression analyses further show that advanced age and poorer manual dexterity can be predicted by the coupled activation of forearm and hand muscles which is associated with high levels of grip force. Our findings suggest that ageing may induce stronger muscle couplings in distal aspects of the upper limbs, and a less economic grasping strategy to overcome age-related decline in manual dexterity.
Collapse
Affiliation(s)
- Chang Ye
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, 14620, USA
| | - Seyed Saman Saboksayr
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, 14620, USA
| | - William Shaw
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Rachel O Coats
- School of Psychology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sarah L Astill
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Gonzalo Mateos
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, 14620, USA.
| | - Ioannis Delis
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
11
|
Li X, Zeng H, Li Y, Song A. Quantitative Assessment via Multi-Domain Fusion of Muscle Synergy Associated With Upper-Limb Motor Function for Stroke Rehabilitation. IEEE Trans Biomed Eng 2024; 71:1430-1441. [PMID: 38051628 DOI: 10.1109/tbme.2023.3339634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Quantitative assessment of upper limb motor function aids therapists in providing appropriate rehabilitation strategies, which plays an essential role in post-stroke rehabilitation. Traditional assessments, relying on clinical scales or kinematic metrics, often involve subjective scores or are influenced by compensatory strategies. Recently, the use of muscle synergies, representing simplified neuromuscular control, has emerged as a promising approach for post-stroke assessment. In general, muscle synergies are decomposed into two components: synergy vectors and synergy activation. Synergy vectors represent the relative weighting of each muscle within each synergy, that is muscle coordination; synergy activation represents the recruitment of the muscle synergy over time, that is muscle activation strength. Both components are vital for adequately assessing patients' motor function. Therefore, we integrate the spatial domain and temporal domain features extracted from synergy vectors and synergy activation, constructing a multi-domain assessment system using a Random Forest classifier, which may provide great qualitative classification accuracy. Furthermore, a novel functional score is generated from the probabilities belonging to the pathological group. Finally, A study involving ten healthy subjects and ten post-stroke patients validates the proposed method. The experimental results show that the classification accuracy was enhanced to 98.56% by fusing the characteristics derived from different domains, which was higher than that based on spatial domain (94.90%) and temporal domain (91.08%), respectively. Furthermore, the assessment score generated by multi-domain fusion framework exhibited a significant correlation with the clinical score. These promising results show the potential of applying the proposed method to clinical assessments for post-stroke patients.
Collapse
|
12
|
Berger DJ, d’Avella A. Myoelectric control and virtual reality to enhance motor rehabilitation after stroke. Front Bioeng Biotechnol 2024; 12:1376000. [PMID: 38665814 PMCID: PMC11043476 DOI: 10.3389/fbioe.2024.1376000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Effective upper-limb rehabilitation for severely impaired stroke survivors is still missing. Recent studies endorse novel motor rehabilitation approaches such as robotic exoskeletons and virtual reality systems to restore the function of the paretic limb of stroke survivors. However, the optimal way to promote the functional reorganization of the central nervous system after a stroke has yet to be uncovered. Electromyographic (EMG) signals have been employed for prosthetic control, but their application to rehabilitation has been limited. Here we propose a novel approach to promote the reorganization of pathological muscle activation patterns and enhance upper-limb motor recovery in stroke survivors by using an EMG-controlled interface to provide personalized assistance while performing movements in virtual reality (VR). We suggest that altering the visual feedback to improve motor performance in VR, thereby reducing the effect of deviations of the actual, dysfunctional muscle patterns from the functional ones, will actively engage patients in motor learning and facilitate the restoration of functional muscle patterns. An EMG-controlled VR interface may facilitate effective rehabilitation by targeting specific changes in the structure of muscle synergies and in their activations that emerged after a stroke-offering the possibility to provide rehabilitation therapies addressing specific individual impairments.
Collapse
Affiliation(s)
- Denise Jennifer Berger
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea d’Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
Chen Y, Yu W, Benali A, Lu D, Kok SY, Wang R. Towards Human-like Walking with Biomechanical and Neuromuscular Control Features: Personalized Attachment Point Optimization Method of Cable-Driven Exoskeleton. Front Aging Neurosci 2024; 16:1327397. [PMID: 38371400 PMCID: PMC10870425 DOI: 10.3389/fnagi.2024.1327397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024] Open
Abstract
The cable-driven exoskeleton can avoid joint misalignment, and is substantial alterations in the pattern of muscle synergy coordination, which arouse more attention in recent years to facilitate exercise for older adults and improve their overall quality of life. This study leverages principles from neuroscience and biomechanical analysis to select attachment points for cable-driven soft exoskeletons. By extracting key features of human movement, the objective is to develop a subject-specific design methodology that provides precise and personalized support in the attachment points optimization of cable-driven exoskeleton to achieve natural gait, energy efficiency, and muscle coordination controllable in the domain of human mobility and rehabilitation. To achieve this, the study first analyzes human walking experimental data and extracts biomechanical features. These features are then used to generate trajectories, allowing better natural movement under complete cable-driven exoskeleton control. Next, a genetic algorithm-based method is employed to minimize energy consumption and optimize the attachment points of the cable-driven system. This process identifies connections that are better suited for the human model, leading to improved efficiency and natural movement. By comparing the calculated elderly human model driven by exoskeleton with experimental subject in terms of joint angles, joint torques and muscle forces, the human model can successfully replicate subject movement and the cable output forces can mimic human muscle coordination. The optimized cable attachment points facilitate more natural and efficient collaboration between humans and the exoskeleton, making significant contributions to the field of assisting the elderly in rehabilitation.
Collapse
Affiliation(s)
- Yasheng Chen
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Weiwei Yu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Abderraouf Benali
- LISV, Versailles Systems Engineering Laboratory, Université de Versailles Saint Quentin en Yvelines, Paris, France
| | - Donglai Lu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Siong Yuen Kok
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Runxiao Wang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
14
|
Park JH, Shin JH, Lee H, Roh J, Park HS. Relevance of Upper Limb Muscle Synergies to Dynamic Force Generation: Perspectives on Rehabilitation of Impaired Intermuscular Coordination in Stroke. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4851-4861. [PMID: 38015664 DOI: 10.1109/tnsre.2023.3337368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
This study investigated the impact of stroke on the control of upper limb endpoint force during isokinetic exercise, a dynamic force-generating task, and its association with stroke-affected muscle synergies. Three-dimensional upper limb endpoint force and electromyography of shoulder and elbow muscles were collected from sixteen chronic stroke survivors and eight neurologically intact adults. Participants were instructed to control the endpoint force direction during three-dimensional isokinetic upper limb movements. The endpoint force control performance was quantitatively evaluated in terms of the coupling between forces in orthogonal directions and the complexity of the endpoint force. Upper limb muscle synergies were compared between participants with varying levels of endpoint force coupling. The stroke survivors generating greater force abnormality than the others exhibited interdependent activation profiles of shoulder- and elbow-related muscle synergies to a greater extent. Based on the relevance of synergy activation to endpoint force control, this study proposes isokinetic training to correct the abnormal synergy activation patterns post-stroke. Several ideas for implementing effective training for stroke-affected synergy activation are discussed.
Collapse
|
15
|
Seo G, Park JH, Park HS, Roh J. Developing new intermuscular coordination patterns through an electromyographic signal-guided training in the upper extremity. J Neuroeng Rehabil 2023; 20:112. [PMID: 37658406 PMCID: PMC10474681 DOI: 10.1186/s12984-023-01236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Muscle synergies, computationally identified intermuscular coordination patterns, have been utilized to characterize neuromuscular control and learning in humans. However, it is unclear whether it is possible to alter the existing muscle synergies or develop new ones in an intended way through a relatively short-term motor exercise in adulthood. This study aimed to test the feasibility of expanding the repertoire of intermuscular coordination patterns through an isometric, electromyographic (EMG) signal-guided exercise in the upper extremity (UE) of neurologically intact individuals. METHODS 10 participants were trained for six weeks to induce independent control of activating a pair of elbow flexor muscles that tended to be naturally co-activated in force generation. An untrained isometric force generation task was performed to assess the effect of the training on the intermuscular coordination of the trained UE. We applied a non-negative matrix factorization on the EMG signals recorded from 12 major UE muscles during the assessment to identify the muscle synergies. In addition, the performance of training tasks and the characteristics of individual muscles' activity in both time and frequency domains were quantified as the training outcomes. RESULTS Typically, in two weeks of the training, participants could use newly developed muscle synergies when requested to perform new, untrained motor tasks by activating their UE muscles in the trained way. Meanwhile, their habitually expressed muscle synergies, the synergistic muscle activation groups that were used before the training, were conserved throughout the entire training period. The number of muscle synergies activated for the task performance remained the same. As the new muscle synergies were developed, the neuromotor control of the trained muscles reflected in the metrics, such as the ratio between the targeted muscles, number of matched targets, and task completion time, was improved. CONCLUSION These findings suggest that our protocol can increase the repertoire of readily available muscle synergies and improve motor control by developing the activation of new muscle coordination patterns in healthy adults within a relatively short period. Furthermore, the study shows the potential of the isometric EMG-guided protocol as a neurorehabilitation tool for aiming motor deficits induced by abnormal intermuscular coordination after neurological disorders. TRIAL REGISTRATION This study was registered at the Clinical Research Information Service (CRiS) of the Korea National Institute of Health (KCT0005803) on 1/22/2021.
Collapse
Affiliation(s)
- Gang Seo
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA
| | - Jeong-Ho Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| | - Hyung-Soon Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea.
| | - Jinsook Roh
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
16
|
Pham K, Portilla-Jiménez M, Roh J. Generalizability of muscle synergies in isometric force generation versus point-to-point reaching in the human upper extremity workspace. Front Hum Neurosci 2023; 17:1144860. [PMID: 37529403 PMCID: PMC10387555 DOI: 10.3389/fnhum.2023.1144860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Isometric force generation and kinematic reaching in the upper extremity has been found to be represented by a limited number of muscle synergies, even across task-specific variations. However, the extent of the generalizability of muscle synergies between these two motor tasks within the arm workspace remains unknown. In this study, we recorded electromyographic (EMG) signals from 13 different arm, shoulder, and back muscles of ten healthy individuals while they performed isometric and kinematic center-out target matches to one of 12 equidistant directional targets in the horizontal plane and at each of four starting arm positions. Non-negative matrix factorization was applied to the EMG data to identify the muscle synergies. Five and six muscle synergies were found to represent the isometric force generation and point-to-point reaches. We also found that the number and composition of muscle synergies were conserved across the arm workspace per motor task. Similar tuning directions of muscle synergy activation profiles were observed at different starting arm locations. Between the isometric and kinematic motor tasks, we found that two to four out of five muscle synergies were common in the composition and activation profiles across the starting arm locations. The greater number of muscle synergies that were involved in achieving a target match in the reaching task compared to the isometric task may explain the complexity of neuromotor control in arm reaching movements. Overall, our results may provide further insight into the neuromotor compartmentalization of shared muscle synergies between two different arm motor tasks and can be utilized to assess motor disabilities in individuals with upper limb motor impairments.
Collapse
|
17
|
Borzelli D, Gurgone S, De Pasquale P, Lotti N, d’Avella A, Gastaldi L. Use of Surface Electromyography to Estimate End-Point Force in Redundant Systems: Comparison between Linear Approaches. Bioengineering (Basel) 2023; 10:234. [PMID: 36829728 PMCID: PMC9952324 DOI: 10.3390/bioengineering10020234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Estimation of the force exerted by muscles from their electromyographic (EMG) activity may be useful to control robotic devices. Approximating end-point forces as a linear combination of the activities of multiple muscles acting on a limb may lead to an inaccurate estimation because of the dependency between the EMG signals, i.e., multi-collinearity. This study compared the EMG-to-force mapping estimation performed with standard multiple linear regression and with three other algorithms designed to reduce different sources of the detrimental effects of multi-collinearity: Ridge Regression, which performs an L2 regularization through a penalty term; linear regression with constraints from foreknown anatomical boundaries, derived from a musculoskeletal model; linear regression of a reduced number of muscular degrees of freedom through the identification of muscle synergies. Two datasets, both collected during the exertion of submaximal isometric forces along multiple directions with the upper limb, were exploited. One included data collected across five sessions and the other during the simultaneous exertion of force and generation of different levels of co-contraction. The accuracy and consistency of the EMG-to-force mappings were assessed to determine the strengths and drawbacks of each algorithm. When applied to multiple sessions, Ridge Regression achieved higher accuracy (R2 = 0.70) but estimations based on muscle synergies were more consistent (differences between the pulling vectors of mappings extracted from different sessions: 67%). In contrast, the implementation of anatomical constraints was the best solution, both in terms of consistency (R2 = 0.64) and accuracy (74%), in the case of different co-contraction conditions. These results may be used for the selection of the mapping between EMG and force to be implemented in myoelectrically controlled robotic devices.
Collapse
Affiliation(s)
- Daniele Borzelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Sergio Gurgone
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita City 565-0871, Osaka, Japan
| | - Paolo De Pasquale
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Nicola Lotti
- Institut fur Technische Informatik (ZITI), Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea d’Avella
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Laura Gastaldi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
18
|
Olikkal P, Pei D, Adali T, Banerjee N, Vinjamuri R. Data Fusion-Based Musculoskeletal Synergies in the Grasping Hand. SENSORS (BASEL, SWITZERLAND) 2022; 22:7417. [PMID: 36236515 PMCID: PMC9570582 DOI: 10.3390/s22197417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The hypothesis that the central nervous system (CNS) makes use of synergies or movement primitives in achieving simple to complex movements has inspired the investigation of different types of synergies. Kinematic and muscle synergies have been extensively studied in the literature, but only a few studies have compared and combined both types of synergies during the control and coordination of the human hand. In this paper, synergies were extracted first independently (called kinematic and muscle synergies) and then combined through data fusion (called musculoskeletal synergies) from 26 activities of daily living in 22 individuals using principal component analysis (PCA) and independent component analysis (ICA). By a weighted linear combination of musculoskeletal synergies, the recorded kinematics and the recorded muscle activities were reconstructed. The performances of musculoskeletal synergies in reconstructing the movements were compared to the synergies reported previously in the literature by us and others. The results indicate that the musculoskeletal synergies performed better than the synergies extracted without fusion. We attribute this improvement in performance to the musculoskeletal synergies that were generated on the basis of the cross-information between muscle and kinematic activities. Moreover, the synergies extracted using ICA performed better than the synergies extracted using PCA. These musculoskeletal synergies can possibly improve the capabilities of the current methodologies used to control high dimensional prosthetics and exoskeletons.
Collapse
Affiliation(s)
| | | | | | | | - Ramana Vinjamuri
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
19
|
Seo G, Lee SW, Beer RF, Alamri A, Wu YN, Raghavan P, Rymer WZ, Roh J. Alterations in motor modules and their contribution to limitations in force control in the upper extremity after stroke. Front Hum Neurosci 2022; 16:937391. [PMID: 35967001 PMCID: PMC9365968 DOI: 10.3389/fnhum.2022.937391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The generation of isometric force at the hand can be mediated by activating a few motor modules. Stroke induces alterations in motor modules underlying steady-state isometric force generation in the human upper extremity (UE). However, how the altered motor modules impact task performance (force production) remains unclear as stroke survivors develop and converge to the three-dimensional (3D) target force. Thus, we tested whether stroke-specific motor modules would be activated from the onset of force generation and also examined how alterations in motor modules would induce changes in force representation. During 3D isometric force development, electromyographic (EMG) signals were recorded from eight major elbow and shoulder muscles in the paretic arm of 10 chronic hemispheric stroke survivors and both arms of six age-matched control participants. A non-negative matrix factorization algorithm identified motor modules in four different time windows: three “exploratory” force ramping phases (Ramps 1–3; 0–33%, 33–67%, and 67–100% of target force magnitude, respectively) and the stable force match phase (Hold). Motor module similarity and between-force coupling were examined by calculating the scalar product and Pearson correlation across the phases. To investigate the association between the end-point force representation and the activation of the motor modules, principal component analysis (PCA) and multivariate multiple linear regression analyses were applied. In addition, the force components regressed on the activation profiles of motor modules were utilized to model the feasible force direction. Both stroke and control groups developed exploratory isometric forces with a non-linear relationship between EMG and force. During the force matching, only the stroke group showed abnormal between-force coupling in medial-lateral and backward-forward and medial-lateral and downward-upward directions. In each group, the same motor modules, including the abnormal deltoid module in stroke survivors, were expressed from the beginning of force development instead of emerging during the force exploration. The PCA and the multivariate multiple linear regression analyses showed that alterations in motor modules were associated with abnormal between-force coupling and limited feasible force direction after stroke. Overall, these results suggest that alterations in intermuscular coordination contribute to the abnormal end-point force control under isometric conditions in the UE after stroke.
Collapse
Affiliation(s)
- Gang Seo
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Sang Wook Lee
- Department of Biomedical Engineering, Catholic University of America, Washington, DC, United States
- Center for Applied Biomechanics and Rehabilitation Research, MedStar National Rehabilitation Hospital, Washington, DC, United States
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Randall F. Beer
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Amani Alamri
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Yi-Ning Wu
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States
| | - Preeti Raghavan
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, United States
| | - William Z. Rymer
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
- Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Jinsook Roh
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- *Correspondence: Jinsook Roh,
| |
Collapse
|
20
|
Seo G, Kishta A, Mugler E, Slutzky MW, Roh J. Myoelectric interface training enables targeted reduction in abnormal muscle co-activation. J Neuroeng Rehabil 2022; 19:67. [PMID: 35778757 PMCID: PMC9250207 DOI: 10.1186/s12984-022-01045-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Abnormal patterns of muscle co-activation contribute to impaired movement after stroke. Previously, we developed a myoelectric computer interface (MyoCI) training paradigm to improve stroke-induced arm motor impairment by reducing the abnormal co-activation of arm muscle pairs. However, it is unclear to what extent the paradigm induced changes in the overall intermuscular coordination in the arm, as opposed to changing just the muscles trained with the MyoCI. This study examined the intermuscular coordination patterns of thirty-two stroke survivors who participated in 6 weeks of MyoCI training. METHODS We used non-negative matrix factorization to identify the arm muscle synergies (coordinated patterns of muscle activity) during a reaching task before and after the training. We examined the extent to which synergies changed as the training reduced motor impairment. In addition, we introduced a new synergy analysis metric, disparity index (DI), to capture the changes in the individual muscle weights within a synergy. RESULTS There was no consistent pattern of change in the number of synergies across the subjects after the training. The composition of muscle synergies, calculated using a traditional synergy similarity metric, also did not change after the training. However, the disparity of muscle weights within synergies increased after the training in the participants who responded to MyoCI training-that is, the specific muscles that the MyoCI was targeting became less correlated within a synergy. This trend was not observed in participants who did not respond to the training. CONCLUSIONS These findings suggest that MyoCI training reduced arm impairment by decoupling only the muscles trained while leaving other muscles relatively unaffected. This suggests that, even after injury, the nervous system is capable of motor learning on a highly fractionated level. It also suggests that MyoCI training can do what it was designed to do-enable stroke survivors to reduce abnormal co-activation in targeted muscles. Trial registration This study was registered at ClinicalTrials.gov (NCT03579992, Registered 09 July 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03579992?term=NCT03579992&draw=2&rank=1 ).
Collapse
Affiliation(s)
- Gang Seo
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA
| | - Ameen Kishta
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Emily Mugler
- Department of Neurology, Northwestern University, 320 E. Superior Ave., Searle 11-473, Chicago, IL, 60611, USA
| | - Marc W Slutzky
- Department of Neurology, Northwestern University, 320 E. Superior Ave., Searle 11-473, Chicago, IL, 60611, USA. .,Department of Neuroscience, Northwestern University, Chicago, IL, USA. .,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA. .,Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - Jinsook Roh
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, 3517 Cullen Blvd, SERC Room 2011, Houston, TX, 77204-5060, USA.
| |
Collapse
|
21
|
Deshpande AD. Novel Biomedical Technologies: Rehabilitation Robotics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Abd AT, Singh RE, Iqbal K, White G. A Perspective on Muscle Synergies and Different Theories Related to Their Adaptation. BIOMECHANICS 2021; 1:253-263. [DOI: 10.3390/biomechanics1020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The human motor system is a complex neuro-musculo sensory system that needs further investigations of neuro-muscular commands and sensory-motor coupling to decode movement execution. Some researchers suggest that the central nervous system (CNS) activates a small set of modules termed muscle synergies to simplify motor control. Further, these modules form functional building blocks of movement as they can explain the neurophysiological characteristics of movements. We can identify and extract these muscle synergies from electromyographic signals (EMG) recorded in the laboratory by using linear decomposition algorithms, such as principal component analysis (PCA) and non-Negative Matrix Factorization Algorithm (NNMF). For the past three decades, the hypothesis of muscle synergies has received considerable attention as we attempt to understand and apply the concept of muscle synergies in clinical settings and rehabilitation. In this article, we first explore the concept of muscle synergies. We then present different strategies of adaptation in these synergies that the CNS employs to accomplish a movement goal.
Collapse
|