1
|
Romanovski V, Sdobnyakov N, Roslyakov S, Kolosov A, Podbolotov K, Savina K, Kwapinski W, Moskovskikh D, Khort A. Bimetallic CuNi Nanoparticle Formation: Solution Combustion Synthesis and Molecular Dynamic Approaches. Inorg Chem 2024; 63:24844-24854. [PMID: 39680590 PMCID: PMC11688667 DOI: 10.1021/acs.inorgchem.4c04260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Nanomaterials are vital in catalysis, sensing, energy storage, and biomedicine and now incorporate multiprincipal element materials to meet evolving technological demands. However, achieving a uniform distribution of multiple elements in these nanomaterials poses significant challenges. In this study, various Cu-Ni compositions were used as a model system to investigate the formation of bimetallic nanoparticles by employing computer simulation molecular dynamics methods and comparing the results with observations from solution-combustion-synthesized materials of the same compositions. The findings reveal the successful synthesis of 12-18 nm bimetallic Cu-Ni nanoparticles with high phase homogeneity, alongside phase-segregated nanoparticles predicted by molecular dynamics simulations. Based on the comparison of the experimental and computational data, a possible scenario for phase segregation during the synthesis was proposed. It includes clustering of the atoms of the same type in an initial solution or the stage of gel formation and further developing segregation during the combustion/cooling stage. The research concludes that early synthesis stages, including particle preformation, significantly influence the phase homogeneity of multiprincipal element alloys. This study contributes to understanding nanomaterial formation, offering insights for improved alloy synthesis and enhanced functionalities in advanced applications.
Collapse
Affiliation(s)
- Valentin Romanovski
- Department
of Materials Science and Engineering, University
of Virginia, Charlottesville, Virginia 22908, United States
- Science
and Research Centre of Functional Nano-Ceramics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
| | | | - Sergey Roslyakov
- Science
and Research Centre of Functional Nano-Ceramics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
| | - Andrei Kolosov
- Department
of General Physics, Tver State University, Tver 170002, Russia
| | - Kirill Podbolotov
- Science
and Research Centre of Functional Nano-Ceramics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
- Physical-Technical
Institute of the National Academy of Sciences of Belarus, Minsk 220141, Belarus
| | - Kseniya Savina
- Department
of General Physics, Tver State University, Tver 170002, Russia
| | - Witold Kwapinski
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Dmitry Moskovskikh
- Science
and Research Centre of Functional Nano-Ceramics, National University of Science and Technology “MISIS”, Moscow 119049, Russia
| | - Alexander Khort
- Division
Surface and Corrosion Science, KTH Royal
Institute of Technology, 114 28 Stockholm, Sweden
| |
Collapse
|
2
|
Itina TE. Understanding mono- and bi-metallic Au and Ni nanoparticle responses to fast heating. NANOSCALE ADVANCES 2024:d4na00634h. [PMID: 39263251 PMCID: PMC11382544 DOI: 10.1039/d4na00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Nanoparticle assembly, alloying and fragmentation are fundamental processes with significant implications in various fields such as catalysis, materials science, and nanotechnology. Understanding these processes under fast heating conditions is crucial for tailoring nanoparticle properties and optimizing their applications. For this, we employ molecular dynamics simulations to obtain atomic-level insights into nanoparticle behavior. The performed simulations reveal intricate details of sintering, alloying and fragmentation mechanisms shedding light on the underlying physical phenomena governing these processes. The calculation results help to visualize nanoparticle evolution upon undercritical and supercritical heating elucidating not only the role of temperature, but also of nanoparticle sizes and composition. In particular, it is shown that surface tension and surface energy play important roles not only in nanoparticle melting but also in its fragmentation. When the added energy exceeds a critical threshold, the nanoparticle begins to experience alternating compression and expansion. If the tensile stress surpasses the material's strength limit, fragmentation becomes prominent. For very small particles (with radius smaller than ∼10 nm), this occurs more rapidly, whereas sub-nano-cavitation precedes the final fragmentation in larger particles, which behave more like droplets. Interestingly, this effect depends on composition in the case of AuNi alloy nanoparticles, as expected from the phase diagrams and excess energy. The heating level required to overcome the mixing barrier is also determined and is shown to play an important role in the evolution of AuNi nanoparticles, in addition to their size. Furthermore, our findings provide insights into controlling nanoparticle synthesis for various applications in numerous nanotechnological domains, such as catalysis, sensors, material analysis, as well as deseas diagnostics and treatment. This study bridges the gap between experimental observations and theoretical predictions paving the way for designing advanced nanomaterials with enhanced functionalities.
Collapse
Affiliation(s)
- Tatiana E Itina
- Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516 F-42023 Saint-Etienne France
| |
Collapse
|
3
|
Ruderman A, Oviedo MB, Paz SA, Leiva EPM. Diversity of Behavior after Collisions of Sn and Si Nanoparticles Found Using a New Density Functional Tight-Binding Method. J Phys Chem A 2023; 127:8955-8965. [PMID: 37831543 DOI: 10.1021/acs.jpca.3c05534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
We present a new approach to studying nanoparticle collisions using density functional based tight binding (DFTB). A novel DFTB parametrization has been developed to study the collision process of Sn and Si clusters (NPs) using molecular dynamics (MD). While bulk structures were used as training sets, we show that our model is able to accurately reproduce the cohesive energy of the nanoparticles using density functional theory (DFT) as a reference. A surprising variety of phenomena are revealed for the Si/Sn nanoparticle collisions, depending on the size and velocity of the collision: from core-shell structure formation to bounce-off phenomena.
Collapse
Affiliation(s)
- Andrés Ruderman
- Facultad de Matemática, Astronomía Física y Computación, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Física Enrique Gaviola (IFEG), Córdoba X5000HUA, Argentina
| | - María Belén Oviedo
- Facultad de Ciencias Quımicas, Departamento de Quımica Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Fisicoquımica de Córdoba (INFIQC), Córdoba X5000HUA, Argentina
| | - Sergio Alexis Paz
- Facultad de Ciencias Quımicas, Departamento de Quımica Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Fisicoquımica de Córdoba (INFIQC), Córdoba X5000HUA, Argentina
| | - Ezequiel P M Leiva
- Facultad de Ciencias Quımicas, Departamento de Quımica Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Consejo Nacional de Investigaciones Cientıficas y Técnicas (CONICET), Instituto de Fisicoquımica de Córdoba (INFIQC), Córdoba X5000HUA, Argentina
| |
Collapse
|
4
|
Chrystie RSM. A Review on 1-D Nanomaterials: Scaling-Up with Gas-Phase Synthesis. CHEM REC 2023; 23:e202300087. [PMID: 37309743 DOI: 10.1002/tcr.202300087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/04/2023] [Indexed: 06/14/2023]
Abstract
Nanowire-like materials exhibit distinctive properties comprising optical polarisation, waveguiding, and hydrophobic channelling, amongst many other useful phenomena. Such 1-D derived anisotropy can be further enhanced by arranging many similar nanowires into a coherent matrix, known as an array superstructure. Manufacture of nanowire arrays can be scaled-up considerably through judicious use of gas-phase methods. Historically, the gas-phase approach however has been extensively used for the bulk and rapid synthesis of isotropic 0-D nanomaterials such as carbon black and silica. The primary goal of this review is to document recent developments, applications, and capabilities in gas-phase synthesis methods of nanowire arrays. Secondly, we elucidate the design and use of the gas-phase synthesis approach; and finally, remaining challenges and needs are addressed to advance this field.
Collapse
Affiliation(s)
- Robin S M Chrystie
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, KFUPM Box 5050, Dhahran, 31261, Saudi Arabia
- IRC for Membranes & Water Security, King Fahd University of Petroleum & Minerals, KFUPM Box 5051, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
5
|
Wang WB, Ohta R, Kambara M. Study on liquid-like SiGe cluster growth during co-condensation from supersaturated vapor mixtures by molecular dynamics simulation. Phys Chem Chem Phys 2022; 24:7442-7450. [PMID: 35274111 DOI: 10.1039/d1cp05589e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the co-condensation processes in the Si-Ge system upon cooling, as determined by molecular dynamics (MD) simulation, we explored the mixed cluster growth dynamics and structural properties leading to the synthesis of liquid-like SiGe nanoclusters. The results indicated that the cluster size quickly increased to large clusters by the coalescence of transient small clusters in the growth stage during co-condensation. The transient clusters at different temperatures were verified to have slightly Si-rich compositions and liquid-like structures. The coalescence of such nanoclusters at high temperatures led to spherical clusters with homogeneous intermixing. However, irregularly shaped clusters with attached mixed parts were obtained owing to incomplete coalescence at low temperatures. Ge atoms tended to move to the cluster surface to exploit their energetically favorable state during the restructuring process, leading to slightly Ge-rich components on the cluster surface. The degree of intermixing for SiGe nanoclusters was related to cluster size. Generally, small clusters appeared to be more segregated during restructuring.
Collapse
Affiliation(s)
- Wen-Bo Wang
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan.
| | - Ryoshi Ohta
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan.
| | - Makoto Kambara
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan.
| |
Collapse
|
6
|
Malti A, Kardani A, Montazeri A. An insight into the temperature-dependent sintering mechanisms of metal nanoparticles through MD-based microstructural analysis. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Eggersdorfer ML, Goudeli E. Structure and dynamics of fractal‐like particles made by agglomeration and sintering. AIChE J 2020. [DOI: 10.1002/aic.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maximilian L. Eggersdorfer
- Currently at Global Drug Development, Technical Research and Development Novartis Pharma AG Basel Switzerland
| | - Eirini Goudeli
- Laboratory of Aerosol and Particle Technology, Department of Chemical Engineering The University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
8
|
Zhao X, Wei C, Gai Z, Yu S, Ren X. Chemical vapor deposition and its application in surface modification of nanoparticles. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00963-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|