1
|
Hawkins N, Antonangelo AR, Wood M, Tocci E, Jansen JC, Fuoco A, Rizzuto C, Longo M, Bezzu CG, Carta M. Nitrogen Enriched Tröger's Base Polymers of Intrinsic Microporosity for Heterogeneous Catalysis. ACS APPLIED POLYMER MATERIALS 2025; 7:220-233. [PMID: 39816930 PMCID: PMC11730871 DOI: 10.1021/acsapm.4c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025]
Abstract
Heterogeneous catalysis is significantly enhanced by the use of highly porous polymers with specific functionalities, such as basic groups, which accelerate reaction rates. Polymers of intrinsic microporosity (PIMs) provide a unique platform for catalytic reactions owing to their high surface areas and customizable pore structures. We herein report a series of Tröger's base polymers (TB-PIMs) with enhanced basicity, achieved through the incorporation of nitrogen-containing groups into their repeat units, such as triazine and triphenylamine. These polymers offer a perfect balance between the pore "swellability", which allows the use of substrates of various dimensions, and the basicity of their repeat units, which facilitates the use of reactants with diverse acidity. The catalytic activity is evaluated through the Knoevenagel condensation of benzaldehydes and various methylene species, conducted in the presence of ethanol as a green solvent and using a 1:1 ratio of the two reagents. The results highlight a significant improvement, with reactions reaching completion using just a 1% molar ratio of catalysts and achieving a 3-fold enhancement over previous results with 4-tert-butyl-benzaldehyde. Computational modeling confirms that the enhanced basicity of the repeat units is attributable to the polymer design. Additionally, preliminary studies are undertaken to assess the kinetics of the catalyzed condensation reaction.
Collapse
Affiliation(s)
- Natasha Hawkins
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
| | - Ariana R. Antonangelo
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
| | - Mitchell Wood
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
| | - Elena Tocci
- Institute
on Membrane Technology, National Research
Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Johannes Carolus Jansen
- Institute
on Membrane Technology, National Research
Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Alessio Fuoco
- Institute
on Membrane Technology, National Research
Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Carmen Rizzuto
- Institute
on Membrane Technology, National Research
Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Mariagiulia Longo
- Institute
on Membrane Technology, National Research
Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - C. Grazia Bezzu
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
| | - Mariolino Carta
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.
| |
Collapse
|
2
|
Wu Y, Antonangelo AR, Bezzu CG, Carta M. Highly Thermally Stable and Gas Selective Hexaphenylbenzene Tröger's Base Microporous Polymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69870-69880. [PMID: 39625852 DOI: 10.1021/acsami.4c15333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
This study shows the multistep synthesis of a series of Tröger's base polymers of intrinsic microporosity (TB-PIMs) based on a hexaphenylbenzene (HPB) core, with a focus on evaluating their thermal stability, porosity, and CO2 capture performance. Both ladder and linear structures were prepared, designed to feature tunable nitrogen content and porosity. Our findings demonstrate that polymers with higher nitrogen content, such as tetra-TB-HPB, exhibit superior CO2 affinity and selectivity, attributed to enhanced interactions with CO2 and optimized micropore sizes. Linear TB-polymers 1 and 2 are also made for comparison and show competitive performance in carbon capture, suggesting that cost-effective, simpler-to-synthesize materials can achieve efficient gas separation. The study reveals that increased porosity significantly enhances CO2 capacity and selectivity, particularly in networked TB-HPB-PIMs with high surface areas and narrow micropores, achieving values up to 544 m2 g-1, CO2 uptake of 2.00 mmol g-1, and CO2/N2 selectivity of 45.6. The thermal properties of these materials, assessed via thermogravimetric analysis (TGA), show that TB-HPB-PIMs maintain robust thermal stability in nitrogen atmosphere, with tetra- and hexa-TB-HPBs leading the series. However, in oxidative environments, denser polymers such as TB-HPB and linear TB-polymer 1 demonstrate higher performance, likely due to restricted air diffusion. Overall, our findings highlight the critical need to balance porosity and thermal stability in TB-HPB-PIMs for applications in gas separation, carbon capture, and the potential for these polymers as flame retardant materials. Tetra-TB-HPB stands out as the most promising material for CO2 capture and thermal stability under inert conditions, while denser polymers like TB-HPB offer superior performance in oxidative environments.
Collapse
Affiliation(s)
- Yue Wu
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| | - Ariana R Antonangelo
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| | - C Grazia Bezzu
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| | - Mariolino Carta
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| |
Collapse
|
3
|
Alkhaldi H, Alharthi S, Alharthi S, AlGhamdi HA, AlZahrani YM, Mahmoud SA, Amin LG, Al-Shaalan NH, Boraie WE, Attia MS, Al-Gahtany SA, Aldaleeli N, Ghobashy MM, Sharshir AI, Madani M, Darwesh R, Abaza SF. Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: a review. RSC Adv 2024; 14:33143-33190. [PMID: 39434995 PMCID: PMC11492427 DOI: 10.1039/d4ra05269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Water is a fundamental resource, yet various contaminants increasingly threaten its quality, necessitating effective remediation strategies. Sustainable polymeric adsorbents have emerged as promising materials in adsorption-based water remediation technologies, particularly for the removal of contaminants and deactivation of water-borne pathogens. Pathogenetic water contamination, which involves the presence of harmful bacteria, viruses, and other microorganisms, poses a significant threat to public health. This review aims to analyze the unique properties of various polymeric materials, including porous aromatic frameworks, biopolymers, and molecularly imprinted polymers, and their effectiveness in water remediation applications. Key findings reveal that these adsorbents demonstrate high surface areas, tunable surface chemistries, and mechanical stability, which enhance their performance in removing contaminants such as heavy metals, organic pollutants, and emerging contaminants from water sources. Furthermore, the review identifies gaps in current research and suggests future directions, including developing multifunctional polymeric materials and integrating adsorption techniques with advanced remediation technologies. This comprehensive analysis aims to contribute to advancing next-generation water purification technologies, ensuring access to clean and safe water for future generations.
Collapse
Affiliation(s)
- Huda Alkhaldi
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Sarah Alharthi
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Salha Alharthi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Hind A AlGhamdi
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Yasmeen M AlZahrani
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Safwat A Mahmoud
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Lamia Galal Amin
- Department of Chemistry, College of Science, Northern Border University (NBU) Arar Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Waleed E Boraie
- Department of Chemistry, College of Science, King Faisal University P.O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - Mohamed S Attia
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia Cairo 11566 Egypt
| | | | - Nadiah Aldaleeli
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - A I Sharshir
- Solid State and Electronic Accelerators Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities, Jubail Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Reem Darwesh
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah Saudi Arabia
| | - Sana F Abaza
- Physics Department, Faculty of Science, Alexandria University 21568 Alexandria Egypt
| |
Collapse
|
4
|
Pathak C, Gogoi A, Devi A, Seth S. Polymers of Intrinsic Microporosity Based on Dibenzodioxin Linkage: Design, Synthesis, Properties, and Applications. Chemistry 2023; 29:e202301512. [PMID: 37303240 DOI: 10.1002/chem.202301512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
The development of polymers of intrinsic microporosity (PIMs) over the last two decades has established them as a distinct class of microporous materials, which combine the attributes of microporous solid materials and the soluble nature of glassy polymers. Due to their solubility in common organic solvents, PIMs are easily processable materials that potentially find application in membrane-based separation, catalysis, ion separation in electrochemical energy storage devices, sensing, etc. Dibenzodioxin linkage, Tröger's base, and imide bond-forming reactions have widely been utilized for synthesis of a large number of PIMs. Among these linkages, however, most of the studies have been based on dibenzodioxin-based PIMs. Therefore, this review focuses precisely on dibenzodioxin linkage chemistry. Herein, the design principles of different rigid and contorted monomer scaffolds are discussed, as well as synthetic strategies of the polymers through dibenzodioxin-forming reactions including copolymerization and postsynthetic modifications, their characteristic properties and potential applications studied so far. Towards the end, the prospects of these materials are examined with respect to their utility in industrial purposes. Further, the structure-property correlation of dibenzodioxin PIMs is analyzed, which is essential for tailored synthesis and tunable properties of these PIMs and their molecular level engineering for enhanced performances making these materials suitable for commercial usage.
Collapse
Affiliation(s)
| | - Abinash Gogoi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Arpita Devi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Saona Seth
- Department of Applied Sciences, Tezpur University, Assam, India
| |
Collapse
|
5
|
Antonangelo AR, Hawkins N, Tocci E, Muzzi C, Fuoco A, Carta M. Tröger's Base Network Polymers of Intrinsic Microporosity (TB-PIMs) with Tunable Pore Size for Heterogeneous Catalysis. J Am Chem Soc 2022; 144:15581-15594. [PMID: 35973136 PMCID: PMC9437925 DOI: 10.1021/jacs.2c04739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Heterogeneous catalysis plays a pivotal role in the preparation
of value-added chemicals, and it works more efficiently when combined
with porous materials and supports. Because of that, a detailed assessment
of porosity and pore size is essential when evaluating the performance
of new heterogeneous catalysts. Herein, we report the synthesis and
characterization of a series of novel microporous Tröger’s
base polymers and copolymers (TB-PIMs) with tunable pore size. The
basicity of TB sites is exploited to catalyze the Knoevenagel condensation
of benzaldehydes and malononitrile, and the dimension of the pores
can be systematically adjusted with an appropriate selection of monomers
and comonomers. The tunability of the pore size provides the enhanced
accessibility of the catalytic sites for substrates, which leads to
a great improvement in conversions, with the best results achieving
completion in only 20 min. In addition, it enables the use of large
benzaldehydes, which is prevented when using polymers with very small
pores, typical of conventional PIMs. The catalytic reaction is more
efficient than the corresponding homogeneous counterpart and is ultimately
optimized with the addition of a small amount of a solvent, which
facilitates the swelling of the pores and leads to a further improvement
in the performance and to a better carbon economy. Molecular dynamic
modeling of the copolymers’ structures is employed to describe
the swellability of flexible chains, helping the understanding of
the improved performance and demonstrating the great potential of
these novel materials.
Collapse
Affiliation(s)
- Ariana R Antonangelo
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| | - Natasha Hawkins
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| | - Elena Tocci
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Chiara Muzzi
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Alessio Fuoco
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), via P. Bucci 17/C, Rende (CS) 87036, Italy
| | - Mariolino Carta
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K
| |
Collapse
|
6
|
Experimental Setup and Graphical User Interface for Zero-Length Column Chromatography. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work describes the design and implementation of a Zero-Length Column system to measure: diffusion coefficients, adsorption isotherm parameters of pure components and mixtures. In addition, a graphical user interface (GUI) was developed in LabVIEW for the semi-automatic operation of the system. The system is novel because it integrates all the aforementioned functionalities without using mass spectrometry. Two adsorbents, zeolite 5A and Basolite® C300 (Copper benzene-1,3,5-tricarboxylate) and two adsorbates methane and ethane were used to perform the validation of adsorption and diffusion experiments. The Henry constants and diffusion coefficients obtained reproduce those previously reported. The combination of the experimental setup and the GUI significantly reduce the amount of sample and measurement time needed in the characterization of the molecular sieves by conventional volumetric and gravimetric systems. The proposed system is relatively inexpensive, robust, easy to build, and capable of reproducing the results of other techniques.
Collapse
|
7
|
Budd PM, McKeown NB. Editorial overview: Separation Engineering: Polymers of intrinsic microporosity (PIMs): two decades on. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|