1
|
Peng M, Zhang Y, Wang X, Gao H, Tan B. Direct Knitting of Pincer Palladium Complexes into Hyper-Crosslinked Polymers for Superior Catalytic Performance in Suzuki-Miyaura Reactions. Chem Asian J 2025; 20:e202401463. [PMID: 39794940 DOI: 10.1002/asia.202401463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Using a direct knitting strategy, we successfully prepared a novel heterogeneous catalyst consisting of pyridine-bridged bis(imidazolium-2-ylidene) palladium complexes (CNC-Pd) embedded in a knitted network polymer. The resulting catalysts (HCP-CNC-Pd-d) exhibited high specific surface areas of 982 m2 g-1 with microporous and mesoporous structures. The large surface area enhances contact between the substrate and the catalytic center, while the strong chelation between CNC and the metal ion ensures the catalyst's durability. The HCP-CNC-Pd-d catalysts exhibited superior performance, achieving an impressive 99 % yield in the Suzuki coupling reaction between bromobenzene and phenylboronic acid. The catalyst also demonstrated good performance across a range of substrates in the Suzuki-Miyaura coupling reactions. Furthermore, the catalyst could be recycled for over 10 cycles without any significant loss in activity and selectivity. This highly cost-effective and convenient approach provides valuable insights into the design and application of heterogeneous catalysts in various fields.
Collapse
Affiliation(s)
- Mengjie Peng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China
| | - Yaqing Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China
| | - Hui Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Hubei, Wuhan, 430074, China
| |
Collapse
|
2
|
Wang Z, Sun X, Liu Q, Xia C, Yin Q, Liu S, Lu X, Chen H. Amino-ionic liquid-assisted highly compatible mixed matrix membranes of ZIF-8 and PIM-1 for efficient CO 2/N 2 separation. Dalton Trans 2025; 54:6281-6289. [PMID: 40130581 DOI: 10.1039/d5dt00335k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Mixed matrix membranes (MMMs), which incorporate metal-organic framework (MOF) nanofillers within a polymer matrix, offer a highly promising solution for CO2 capture and separation. However, poor interfacial compatibility and filler aggregation in MMMs pose significant challenges to enhancing CO2/N2 separation performance. Here, we present a novel approach using amino-ionic liquid modification to optimize MMMs, where the modified AFIL promotes the formation of ZIF-8 with well-defined facets and sharp edges and enhances the compatibility between ZIF-8 particles and PIM-1 polymer matrixes for favorable CO2 affinity and selective CO2 transport. The resulting 10 wt% AFIL@ZIF-8/PIM-1 exhibits exceptional gas separation performance with a CO2 permeability of 7864 ± 262.2 Barrer and a CO2/N2 selectivity of 29.66 ± 1.96. More importantly, the incorporation of AFIL into the ZIF-8 pores significantly enhances the thermal stability and aging resistance of AFIL@ZIF-8/PIM-1 MMMs via structural support and hydrogen bonding interactions. This work provides a practical approach for developing hybrid membranes for CO2/N2 separation, showcasing improved overall performance and strong interfacial compatibility.
Collapse
Affiliation(s)
- Zhaojie Wang
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xinle Sun
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Qinglong Liu
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Caifeng Xia
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Qikang Yin
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Siyuan Liu
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xiaoqing Lu
- Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hongyu Chen
- College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| |
Collapse
|
3
|
Bharatee RK, Quaff AR, Jaiswal SK. Advances in perovskite membranes for carbon capture & utilization: A sustainable approach to CO 2 emissions reduction - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124924. [PMID: 40088825 DOI: 10.1016/j.jenvman.2025.124924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Despite agreements like the Paris Agreement, the world continues to face rising temperatures, extreme weather, and ecosystem disruptions, driven by continued use fossil fuel, agricultural emissions, and industrial activities and leading to greenhouse gas contributing to the serious fuelling climate change. Carbon capture and utilization (CCU), particularly thermochemical carbon dioxide (CO2) splitting powered by thermal energy, offers a promising solution. Perovskite-based inorganic membranes, known for their high selectivity and permeability toward various gases, efficiency, and energy-saving potential, have attracted significant interest in gas separation, production and emerged as a leading technology for carbon capture and hydrogen purification. This review explores advancements in perovskite materials, focusing on H2/CO2 separation, CO2 conversion to CO, and optimal operating conditions. It addresses key questions such as improving material performance through innovations in double and composite perovskites, enhancing oxygen removal via thermochemical or electrochemical pumps, and integrating CO2 splitting with fuel production. These strategies aim to reduce costs, boost efficiency, and provide sustainable pathways for addressing climate change.
Collapse
Affiliation(s)
- Ranjeet Kumar Bharatee
- Civil Engineering Department, National Institute of Technology Patna, Bihar-800005, India.
| | - Abdur Rahman Quaff
- Civil Engineering Department, National Institute of Technology Patna, Bihar-800005, India.
| | | |
Collapse
|
4
|
Ge L, Li X, Zhu G, Niu B, Chen Q, Zhong D, Sun X. Recent developments and applications of solid membrane in chiral separation. J Chromatogr A 2025; 1743:465652. [PMID: 39827785 DOI: 10.1016/j.chroma.2025.465652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Chirality is a fundamental property in nature, and chiral molecules are closely related to human health and the origin of life. Therefore, the exploration and preparation of optically active compounds of paramount importance. Membrane separation is a large-scale and continuous separation technique that has been developing quickly in recent years. It has many potential applications, particularly in chiral membrane separation technology, which is currently a hotspot for study. Depending on the types of membranes, chiral membranes can be divided into two categories: chiral solid membranes and chiral liquid membranes. Solid membranes outperform the others in terms of better mechanical performance and separation efficiency. This review presents in-depth summaries of chiral solid membranes made of different materials, and their applications in drug separation. It also providing insights into the potential for the future development of chiral solid membranes.
Collapse
Affiliation(s)
- Li Ge
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xinyu Li
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Gege Zhu
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dan Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiaodong Sun
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Amin MK, Ye C, Pang S, Liu Y, Taylor D, Nichol GS, McKeown NB. Triptycene-like naphthopleiadene as a readily accessible scaffold for supramolecular and materials chemistry. Chem Sci 2024:d4sc02755h. [PMID: 39211740 PMCID: PMC11348350 DOI: 10.1039/d4sc02755h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Triptycene derivatives are used extensively in supramolecular and materials chemistry, however, most are prepared using a multi-step synthesis involving the generation of a benzyne intermediate, which hinders production on a large scale. Inspired by the ease of the synthesis of resorcinarenes, we report the rapid and efficient preparation of triptycene-like 1,6,2',7'-tetrahydroxynaphthopleiadene directly from 2,7-dihydroxynaphthalene and phthalaldehyde. Structural characterisation confirms the novel bridged bicyclic framework, within which the planes of the single benzene ring and two naphthalene units are fixed at an angle of ∼120° relative to each other. Other combinations of aromatic 1,2-dialdehydes and 2,7-disubstituted naphthalenes also provided similar triptycene-like products. The low cost of the precursors and undemanding reaction conditions allow for rapid multigram synthesis of 1,6,2',7'-tetrahydroxynaphthopleiadene, which is shown to be a useful precursor for making the parent naphthopleiadene hydrocarbon. The great potential for the use of the naphthopleiadene scaffold in supramolecular and polymer chemistry is demonstrated by the preparation of a rigid novel cavitand, a microporous network polymer, and a solution-processable polymer of intrinsic microporosity.
Collapse
Affiliation(s)
- Md Khairul Amin
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
- Chemistry Discipline, Khulna University Khulna 9208 Bangladesh
| | - Chunchun Ye
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Shuhua Pang
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Yuancheng Liu
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Dominic Taylor
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Gary S Nichol
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Neil B McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
6
|
Pathak C, Gogoi A, Devi A, Seth S. Polymers of Intrinsic Microporosity Based on Dibenzodioxin Linkage: Design, Synthesis, Properties, and Applications. Chemistry 2023; 29:e202301512. [PMID: 37303240 DOI: 10.1002/chem.202301512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
The development of polymers of intrinsic microporosity (PIMs) over the last two decades has established them as a distinct class of microporous materials, which combine the attributes of microporous solid materials and the soluble nature of glassy polymers. Due to their solubility in common organic solvents, PIMs are easily processable materials that potentially find application in membrane-based separation, catalysis, ion separation in electrochemical energy storage devices, sensing, etc. Dibenzodioxin linkage, Tröger's base, and imide bond-forming reactions have widely been utilized for synthesis of a large number of PIMs. Among these linkages, however, most of the studies have been based on dibenzodioxin-based PIMs. Therefore, this review focuses precisely on dibenzodioxin linkage chemistry. Herein, the design principles of different rigid and contorted monomer scaffolds are discussed, as well as synthetic strategies of the polymers through dibenzodioxin-forming reactions including copolymerization and postsynthetic modifications, their characteristic properties and potential applications studied so far. Towards the end, the prospects of these materials are examined with respect to their utility in industrial purposes. Further, the structure-property correlation of dibenzodioxin PIMs is analyzed, which is essential for tailored synthesis and tunable properties of these PIMs and their molecular level engineering for enhanced performances making these materials suitable for commercial usage.
Collapse
Affiliation(s)
| | - Abinash Gogoi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Arpita Devi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Saona Seth
- Department of Applied Sciences, Tezpur University, Assam, India
| |
Collapse
|
7
|
Moruzzi F, Zhang W, Purushothaman B, Gonzalez-Carrero S, Aitchison CM, Willner B, Ceugniet F, Lin Y, Kosco J, Chen H, Tian J, Alsufyani M, Gibson JS, Rattner E, Baghdadi Y, Eslava S, Neophytou M, Durrant JR, Steier L, McCulloch I. Solution-processable polymers of intrinsic microporosity for gas-phase carbon dioxide photoreduction. Nat Commun 2023; 14:3443. [PMID: 37301872 DOI: 10.1038/s41467-023-39161-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Four solution-processable, linear conjugated polymers of intrinsic porosity are synthesised and tested for gas phase carbon dioxide photoreduction. The polymers' photoreduction efficiency is investigated as a function of their porosity, optical properties, energy levels and photoluminescence. All polymers successfully form carbon monoxide as the main product, without the addition of metal co-catalysts. The best performing single component polymer yields a rate of 66 μmol h-1 m-2, which we attribute to the polymer exhibiting macroporosity and the longest exciton lifetimes. The addition of copper iodide, as a source of a copper co-catalyst in the polymers shows an increase in rate, with the best performing polymer achieving a rate of 175 μmol h-1 m-2. The polymers are active for over 100 h under operating conditions. This work shows the potential of processable polymers of intrinsic porosity for use in the gas phase photoreduction of carbon dioxide towards solar fuels.
Collapse
Affiliation(s)
- Floriana Moruzzi
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Weimin Zhang
- KAUST Solar Centre, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Kingdom of Saudi Arabia
| | - Balaji Purushothaman
- KAUST Solar Centre, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Kingdom of Saudi Arabia
| | - Soranyel Gonzalez-Carrero
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London, W12 7TA, UK
| | - Catherine M Aitchison
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Benjamin Willner
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Fabien Ceugniet
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Yuanbao Lin
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Jan Kosco
- KAUST Solar Centre, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Kingdom of Saudi Arabia
| | - Hu Chen
- School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| | - Junfu Tian
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Maryam Alsufyani
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Joshua S Gibson
- Henry Royce Institute Oxford Centre for Energy Materials Research, Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Ed Rattner
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yasmine Baghdadi
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Salvador Eslava
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Marios Neophytou
- KAUST Solar Centre, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Kingdom of Saudi Arabia
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London, W12 7TA, UK
| | - Ludmilla Steier
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Iain McCulloch
- Department of Chemistry, Oxford University, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
8
|
Chen J, Longo M, Fuoco A, Esposito E, Monteleone M, Comesaña Gándara B, Carolus Jansen J, McKeown NB. Dibenzomethanopentacene-Based Polymers of Intrinsic Microporosity for Use in Gas-Separation Membranes. Angew Chem Int Ed Engl 2023; 62:e202215250. [PMID: 36511357 PMCID: PMC10107563 DOI: 10.1002/anie.202215250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Dibenzomethanopentacene (DBMP) is shown to be a useful structural component for making Polymers of Intrinsic Microporosity (PIMs) with promise for making efficient membranes for gas separations. DBMP-based monomers for PIMs are readily prepared using a Diels-Alder reaction between 2,3-dimethoxyanthracene and norbornadiene as the key synthetic step. Compared to date for the archetypal PIM-1, the incorporation of DBMP simultaneously enhances both gas permeability and the ideal selectivity for one gas over another. Hence, both ideal and mixed gas permeability data for DBMP-rich co-polymers and an amidoxime modified PIM are close to the current Robeson upper bounds, which define the state-of-the-art for the trade-off between permeability and selectivity, for several important gas pairs. Furthermore, long-term studies (over ≈3 years) reveal that the reduction in gas permeabilities on ageing is less for DBMP-containing PIMs relative to that for other high performing PIMs, which is an attractive property for the fabrication of membranes for efficient gas separations.
Collapse
Affiliation(s)
- Jie Chen
- EaStCHEMSchool of ChemistryUniversity of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| | - Mariagiulia Longo
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | - Alessio Fuoco
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | - Elisa Esposito
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | - Marcello Monteleone
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | | | - Johannes Carolus Jansen
- Institute on Membrane TechnologyNational Research Council of Italy (CNR-ITM)via P. Bucci 17/C87036Rende (CS)Italy
| | - Neil B. McKeown
- EaStCHEMSchool of ChemistryUniversity of EdinburghDavid Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
9
|
Solution-processable Amorphous Microporous Polymers for Membrane Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Wang A, Tan R, Breakwell C, Wei X, Fan Z, Ye C, Malpass-Evans R, Liu T, Zwijnenburg MA, Jelfs KE, McKeown NB, Chen J, Song Q. Solution-Processable Redox-Active Polymers of Intrinsic Microporosity for Electrochemical Energy Storage. J Am Chem Soc 2022; 144:17198-17208. [PMID: 36074146 PMCID: PMC9501925 DOI: 10.1021/jacs.2c07575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Redox-active organic materials have emerged as promising alternatives to conventional inorganic electrode materials in electrochemical devices for energy storage. However, the deployment of redox-active organic materials in practical lithium-ion battery devices is hindered by their undesired solubility in electrolyte solvents, sluggish charge transfer and mass transport, as well as processing complexity. Here, we report a new molecular engineering approach to prepare redox-active polymers of intrinsic microporosity (PIMs) that possess an open network of subnanometer pores and abundant accessible carbonyl-based redox sites for fast lithium-ion transport and storage. Redox-active PIMs can be solution-processed into thin films and polymer-carbon composites with a homogeneously dispersed microstructure while remaining insoluble in electrolyte solvents. Solution-processed redox-active PIM electrodes demonstrate improved cycling performance in lithium-ion batteries with no apparent capacity decay. Redox-active PIMs with combined properties of intrinsic microporosity, reversible redox activity, and solution processability may have broad utility in a variety of electrochemical devices for energy storage, sensors, and electronic applications.
Collapse
Affiliation(s)
- Anqi Wang
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Rui Tan
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Charlotte Breakwell
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Xiaochu Wei
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Zhiyu Fan
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Chunchun Ye
- EaStChem
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | | | - Tao Liu
- Shanghai
Key Laboratory of Chemical Assessment and Sustainability, Department
of Chemistry, Tongji University, Shanghai 200092, China
| | | | - Kim E. Jelfs
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Neil B. McKeown
- EaStChem
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Jun Chen
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qilei Song
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| |
Collapse
|
11
|
Morgan WJ, Anstine DM, Colina CM. Temperature Effects in Flexible Adsorption Processes for Amorphous Microporous Polymers. J Phys Chem B 2022; 126:6354-6365. [PMID: 35969816 DOI: 10.1021/acs.jpcb.2c04543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A collection of atomistic molecular simulations is reported that illustrate the impact of adsorption temperature on species uptake and adsorbate-induced structural rearrangement for amorphous polymers of intrinsic microporosity. Temperature-sensitive structural rearrangement is evaluated by contrasting two methods: standard grand canonical Monte Carlo simulations using a rigid framework approximation and a combined Monte Carlo/molecular dynamics approach that fully incorporates framework flexibility. We report single-component gas phase adsorption isotherms for CH4, C2H4, C2H6, C3H6, C3H8, and CO2 across a temperature range of 250-400 K for models of an archetypal polymer of intrinsic microporosity, PIM-1. A quadratic model is presented that captures two main mechanisms of temperature-dependent adsorption-induced deformation of PIM-1 up to a relative swelling of 1.15: thermal expansion and an increased propensity to swell as a function of species uptake. Two case studies are reported that highlight the critical role of operating temperature in industrial storage and separation applications. The first study focuses on methane storage and delivery applications using a pressure-temperature swing adsorption application (PTSA). We demonstrate that larger working capacities are accompanied by increased volumetric strain between adsorption-desorption steps. The second case study considers PIM-1 as an adsorbent to separate an exemplar ternary syngas mixture at operating temperatures ranging 300-550 K. A temperature threshold of ∼400 K is identified, beyond which adsorption-induced PIM-1 swelling is negligible and the solubility selectivity-loading curve transitions to exhibiting a nearly linear relationship.
Collapse
Affiliation(s)
- Wesley J Morgan
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States.,George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States
| | - Dylan M Anstine
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States.,Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Coray M Colina
- George and Josephine Butler Polymer Research Laboratory, University of Florida, Gainesville, Florida 32611, United States.,Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States.,Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
12
|
Budd PM, McKeown NB. Editorial overview: Separation Engineering: Polymers of intrinsic microporosity (PIMs): two decades on. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|