1
|
Qiu B, Gao Y, Gorgojo P, Fan X. Membranes of Polymer of Intrinsic Microporosity PIM-1 for Gas Separation: Modification Strategies and Meta-Analysis. NANO-MICRO LETTERS 2025; 17:114. [PMID: 39847125 PMCID: PMC11757663 DOI: 10.1007/s40820-024-01610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/28/2024] [Indexed: 01/24/2025]
Abstract
Polymers of intrinsic microporosity (PIMs) have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades, owing to their highly permeable porous structures. However, challenges regarding its relatively low selectivity, physical aging, and plasticisation impede relevant industrial adoptions for gas separation. To address these issues, several strategies including chain modification, post-modification, blending with other polymers, and the addition of fillers, have been developed and explored. PIM-1 is the most investigated PIMs, and hence here we review the state-of-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis. Additionally, the development of PIM-1-based thin film composite membranes is commented as well, shedding light on their potential in industrial gas separation. We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications.
Collapse
Affiliation(s)
- Boya Qiu
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Yong Gao
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China
| | - Patricia Gorgojo
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC-Universidad de Zaragoza, Mariano Esquillor, 50018, Zaragoza, Spain.
- Departamento de Ingeniería Química y Tecnologías del Medio Ambiente, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Xiaolei Fan
- Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, People's Republic of China.
- Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, 315048, People's Republic of China.
| |
Collapse
|
2
|
Golgoli M, Farahbakhsh J, Najafi M, Khiadani M, Johns ML, Zargar M. Resilient forward osmosis membranes against microplastics fouling enhanced by MWCNTs/UiO-66-NH 2 hybrid nanoparticles. CHEMOSPHERE 2024; 359:142180. [PMID: 38679179 DOI: 10.1016/j.chemosphere.2024.142180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
The escalating presence of microplastics (MPs) in wastewater necessitates the investigation of effective tertiary treatment process. Forward osmosis (FO) emerges as an effective non-pressurized membrane process, however, for the effective implementation of FO systems, the development of fouling-resistance FO membranes with high-performance is essential. This study focuses on the integration of MWCNT/UiO-66-NH2 as metal-organic frameworks (MOFs) and multi-wall carbon nanotubes (MWCNT) nanocomposites in thin film composite (TFC) FO membranes, harnessing the synergistic power of hybrid nanoparticles in FO membranes. The results showed that the addition of MWCNT/UiO-66-NH2 in the aqueous phase during polyamide formation changed the polyamide surface structure, and enhanced membranes' hydrophilicity by 44%. The water flux of the modified FO membrane incorporated with 0.1 wt% MWCNTs/UiO-66-NH2 increased by 67% and the reverse salt flux decreased by 22% as in comparison with the control membrane. Moreover, the modified membrane showed improved antifouling behavior against both organic foulant and MPs. The MWCNT/UiO-66-NH2 membrane experienced 35% flux decline while the control membrane experienced 65% flux decline. This proves that the integration of MWCNT/UiO-66-NH2 nanoparticles into TFC FO membranes is a viable approach in creating advanced FO membranes with high antifouling propensity with potential to be expanded further to other membrane applications.
Collapse
Affiliation(s)
- Mitra Golgoli
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Javad Farahbakhsh
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| | - Michael L Johns
- Fluid Science & Resources Division, Department of Chemical Engineering, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
3
|
Emamverdi F, Huang J, Razavi NM, Bojdys MJ, Foster AB, Budd PM, Böhning M, Schönhals A. Molecular Mobility and Gas Transport Properties of Mixed Matrix Membranes Based on PIM-1 and a Phosphinine Containing Covalent Organic Framework. Macromolecules 2024; 57:1829-1845. [PMID: 38435679 PMCID: PMC10902888 DOI: 10.1021/acs.macromol.3c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
Polymers with intrinsic microporosity (PIMs) are gaining attention as gas separation membranes. Nevertheless, they face limitations due to their pronounced physical aging. In this study, a covalent organic framework containing λ5-phosphinine moieties, CPSF-EtO, was incorporated as a nanofiller (concentration range 0-10 wt %) into a PIM-1 matrix forming dense films with a thickness of ca. 100 μm. The aim of the investigation was to investigate possible enhancements of gas transport properties and mitigating effects on physical aging. The incorporation of the nanofiller occurred on an nanoaggregate level with domains up to 100 nm, as observed by T-SEM and confirmed by X-ray scattering. Moreover, the X-ray data show that the structure of the microporous network of the PIM-1 matrix is changed by the nanofiller. As molecular mobility is fundamental for gas transport as well as for physical aging, the study includes dielectric investigations of pure PIM-1 and PIM-1/CPSF-EtO mixed matrix membranes to establish a correlation between the molecular mobility and the gas transport properties. Using the time-lag method, the gas permeability and the permselectivity were determined for N2, O2, CH4, and CO2 for samples with variation in filler content. A significant increase in the permeability of CH4 and CO2 (50% increase compared to pure PIM-1) was observed for a concentration of 5 wt % of the nanofiller. Furthermore, the most pronounced change in the permselectivity was found for the gas pair CO2/N2 at a filler concentration of 7 wt %.
Collapse
Affiliation(s)
- Farnaz Emamverdi
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Jieyang Huang
- Department
of Chemistry, Humboldt University, Brook-Taylor Straße 2, Berlin 12489, Germany
| | - Negar Mosane Razavi
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Michael J. Bojdys
- Department
of Chemistry, Humboldt University, Brook-Taylor Straße 2, Berlin 12489, Germany
| | - Andrew B. Foster
- School
of Chemistry, University of Manchester, Manchester M 13 9PL, United Kingdom
| | - Peter M. Budd
- School
of Chemistry, University of Manchester, Manchester M 13 9PL, United Kingdom
| | - Martin Böhning
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Andreas Schönhals
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| |
Collapse
|
4
|
Budd PM, McKeown NB. Editorial overview: Separation Engineering: Polymers of intrinsic microporosity (PIMs): two decades on. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|