1
|
Park JY, Lee M, Jeong SH, Lee HK. Beagle: a near-edge X-ray absorption fine-structure spectroscopy data processing solution for beamline experiments at Pohang Accelerator Laboratory. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:202-207. [PMID: 37930256 PMCID: PMC10833428 DOI: 10.1107/s1600577523008755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy is a powerful tool for identifying chemical bonding states at synchrotron radiation facilities. Advances in new materials require researchers in both academia and industry to measure tens to hundreds of samples during the available beam time on a synchrotron beamline, which is typically allocated to users. Automated measurement methods, along with analysis software, have been developed for beamlines. Automated measurements facilitate high-throughput experiments and accumulate vast amounts of measured spectral data. The analysis software supports various functions for analyzing the experimental data; however, these analysis methods are complicated, and learning them can be time-consuming. To process large amounts of spectral data, a new analysis software, dedicated to NEXAFS spectroscopy, that is easy to use and can provide results in a short time is desired. Herein, the development of Beagle is described, software calculating molecular orientation from NEXAFS spectroscopy data that can report results in a short time comparable with that required to measure one sample at the beamline. It was designed to progress in a single sequence from data loading to the printing of the results with a `click of a button'. The functions of the software include recognizing the dataset, correcting the background, normalizing the plot, calculating the electron yield and determining the molecular orientation. The analysis results can be saved as {\tt{.txt}} files (spectral data), {\tt{.pdf}} files (graphic images) and Origin files (spectral data and graphic images).
Collapse
Affiliation(s)
- Jae Yeon Park
- Radiation Fusion Technology Research Division, Advanced Radiation Technology Institute (ARTI)/Korea Atomic Energy Research (KAERI), 29 Geum gu-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Minwoong Lee
- Radiation Fusion Technology Research Division, Advanced Radiation Technology Institute (ARTI)/Korea Atomic Energy Research (KAERI), 29 Geum gu-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Seong-Hoon Jeong
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), 80 Jigok-ro 127 beon-gil, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Han-Koo Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), 80 Jigok-ro 127 beon-gil, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| |
Collapse
|
2
|
Lang JT, Kulkarni D, Foster CW, Huang Y, Sepe MA, Shimpalee S, Parkinson DY, Zenyuk IV. X-ray Tomography Applied to Electrochemical Devices and Electrocatalysis. Chem Rev 2023; 123:9880-9914. [PMID: 37579025 PMCID: PMC10450694 DOI: 10.1021/acs.chemrev.2c00873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 08/16/2023]
Abstract
X-ray computed tomography (CT) is a nondestructive three-dimensional (3D) imaging technique used for studying morphological properties of porous and nonporous materials. In the field of electrocatalysis, X-ray CT is mainly used to quantify the morphology of electrodes and extract information such as porosity, tortuosity, pore-size distribution, and other relevant properties. For electrochemical systems such as fuel cells, electrolyzers, and redox flow batteries, X-ray CT gives the ability to study evolution of critical features of interest in ex situ, in situ, and operando environments. These include catalyst degradation, interface evolution under real conditions, formation of new phases (water and oxygen), and dynamics of transport processes. These studies enable more efficient device and electrode designs that will ultimately contribute to widespread decarbonization efforts.
Collapse
Affiliation(s)
- Jack T. Lang
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, California 92617, United States
| | - Devashish Kulkarni
- National
Fuel Cell Research Center, University of
California, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92617, United States
| | - Collin W. Foster
- Department
of Aerospace Engineering, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Ying Huang
- National
Fuel Cell Research Center, University of
California, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92617, United States
| | - Mitchell A. Sepe
- Hydrogen
and Fuel Cell Center, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Sirivatch Shimpalee
- Hydrogen
and Fuel Cell Center, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Dilworth Y. Parkinson
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Iryna V. Zenyuk
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92617, United States
| |
Collapse
|
3
|
Flox C, Zhang C, Li Y. Redox flow battery as an emerging technology: current status and research trends. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2022.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Tafoya JPV, Thielke M, Tian G, Jervis R, Sobrido ABJ. Can electrospun nanofibres replace traditional carbon felt electrodes in redox flow batteries? Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|